Our Mission

Research Focus

Featured Faculty

GloriaFerreira

Gloria Ferreira, Ph.D.

Professor, COLLEGE OF MEDICINE MOLECULAR MEDICINE
  • Our main research interest is defining the reaction and regulatory mechanisms of the first and terminal heme biosynthetic pathway enzymes, 5-aminolevulinate synthase (ALAS) and ferrochelatase (FC). Iron overload is a clinically important feature of sideroblastic anemia, X-linked SA, and myelodysplastic syndrome, which often results from either ineffective hematopoiesis or the repeated transfusions undergone by the patients to manage their erythropoietic defects. The pathological consequences of mitochondrial mishandling of iron and heme synthesis are also evident in erythropoietic porphyrias. There is no cure for the above disorders, and thus understanding the mechanisms of the terminal stages of erythropoiesis becomes necessary for discovering novel therapeutic targets. Towards this goal, our on-going research focuses on establishing 1) whether succinyl-CoA synthetase b-subunit allosterically fine-tunes the activity of erythroid ALAS and 2) the mechanism of Fe2+ delivery to FC.
Read More...

Education Programs

Ph.D. Program Master's Program Graduate Certificates Apply Now

Ph.D. Students

  • While chaperones are often linked to protein degradation, they also can preserve proteins. We have shown that one chaperone in particular, the constitutive Hsp70 variant, Hsc70, preserves free hyperphosphorylated tau, the accumulation of which can cause tauopathies including Alzheimer’s disease. In addition, other Hsp70 variants may be involved in the cell-to-cell propagation of tau; a recently discovered mechanism that could be contributing to the disease. Thus, inhibiting chaperones like Hsp70 proteins could be a novel therapeutic approach to treat multiple phases of tau diseases. To this end, we have screened a number of rhodacyanine derivatives designed to inhibit the Hsp70 family of chaperones for anti-tau activity. Our data shows that targeting Hsp70s may not only facilitate tau clearance inside of cells, but may also prevent its propagation in the brain.
Read More...

Post Docs

LeonidBreydo

Leonid Breydo, Ph.D.

Research Associate, COLLEGE OF MEDICINE MOLECULAR MEDICINE
  • misfolding and aggregation of intrinsically disordered proteins
Read More...