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This review identifies 10 common errors and problems in the statistical analysis, design, interpretation, and

reporting of obesity research and discuss how they can be avoided. The 10 topics are: 1) misinterpretation

of statistical significance, 2) inappropriate testing against baseline values, 3) excessive and undisclosed

multiple testing and “P-value hacking,” 4) mishandling of clustering in cluster randomized trials, 5) miscon-

ceptions about nonparametric tests, 6) mishandling of missing data, 7) miscalculation of effect sizes, 8)

ignoring regression to the mean, 9) ignoring confirmation bias, and 10) insufficient statistical reporting. It is

hoped that discussion of these errors can improve the quality of obesity research by helping researchers to

implement proper statistical practice and to know when to seek the help of a statistician.
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Introduction
Obesity studies cannot advance without good science. Unfortunately,

many recent articles have raised valid questions about the quality of sci-

ence underlying some obesity research (1-21,23). Many of the flaws identi-

fied in these critiques stem from errors in statistical design, analysis, inter-

pretation, and reporting. This article describes 10 errors that appear

repeatedly in the literature and discusses ways to identify and correct such

errors. Our purpose is to educate and enable researchers and reviewers to

recognize these errors and to avoid making them in their own studies.

Significance of Statistical Tests
Statistical significance is perhaps the least important attribute of a
good experiment; it is never a sufficient condition for claiming that
a theory has been usefully corroborated, that a meaningful empirical
fact has been established, or that an experimental report ought to
be published.” (Lykken, 1968) (23)

Statistical hypothesis testing
Consider the case in which an investigator is interested in contrast-

ing the effects on body mass index (BMI) of an experimental diet

compared with a control diet. At the end of the experiment, the

researcher may see that the participants given the experimental diet

had on average a 2-unit decrease in BMI, while those on the control

diet had on average only a 1-unit decrease. Inference about whether

the experimental diet resulted in a greater reduction in BMI depends

greatly on the variability of the decrease among the subjects. Some

subjects will have lost more weight than others, while others may

have gained weight during the study. A subjective “eyeball” test for

a difference between groups lacks scientific rigor, so researchers

typically rely on statistical methods to make quantitative conclusions

about their data.

Statistical hypothesis tests provide a framework for deciding whether

observed values differ from what would be expected by chance

under the assumption that the two treatments have identical effects

(i.e., the difference in mean BMI changes between treatments is

zero). The null hypothesis (H0) is therefore written as

H0 : lexp–lcntl50 (1)

where lexp and lcntl are the mean population changes in the out-

come of interest (here, BMI) for the experimental and control

groups, respectively. The alternative hypothesis (HA) is simply that

the treatment means are different, which is written as

1 Office of Energetics, University of Alabama at Birmingham, Birmingham, Alabama, USA. Correspondence: Brandon J. George (brgeorge@uab.edu)
2 Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA 3 Nutrition Obesity Research Center, University of
Alabama at Birmingham, Birmingham, Alabama, USA 4 Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA 5 Department of
Biostatistics, University at Buffalo, Buffalo, New York, USA 6 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem,
North Carolina, USA 7 Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, USA 8 Division of
Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA 9 Department of
Health Services Administration, University of Alabama at Birmingham, Birmingham, Alabama, USA 10 Department of Epidemiology & Community Health,
University of Minnesota, Minneapolis, Minnesota, USA 11 Department of Health Policy and Management, University of North Carolina, Chapel Hill, North
Carolina, USA 12 Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

See Commentary, pg. 767.

Funding agencies: Funded in part by NIH grants P30DK056336, R25HL124208, R25DK099080, R01MH099010, R01MD009055, R25GM116167, and T32DK062710.

The opinions expressed are those of the authors and not necessarily the NIH or any other organization.

Disclosure: The authors declared no conflict of interest.

Received: 29 October 2015; Accepted: 7 December 2015; Published online 30 March 2016. doi:10.1002/oby.21449

www.obesityjournal.org Obesity | VOLUME 24 | NUMBER 4 | APRIL 2016 781

Review
STATISTICAL ISSUES IN OBESITY RESEARCH

Obesity



HA : lexp–lcntl 6¼ 0 (2)

There are four possible outcomes of a hypothesis test as shown in

Table 1. In two cases, the researcher gets it right: not rejecting H0

when the treatments are equivalent and rejecting H0 when the treat-

ments are different. But the researcher can also get it wrong in two

ways: rejecting H0 when the treatments are actually equal, which is

known as a Type I error or false positive, and failing to reject H0

when the treatments are actually different, which is known as a

Type II error or false negative.

Defining null-hypothesis significance testing
Significance testing is often discussed in terms of P-values. The P-

value is the probability (ranging from 0 to 1) of observing a given

result (or something more extreme) under the assumption that H0 is

true. In the above example, it would be the probability of seeing the

difference in BMI means between the groups by chance, if in fact

the diets have no difference in average effect (24). The reader can

then decide whether the results are statistically significant on the

basis of a prespecified significance level (a) of their choosing, in

which the null hypothesis is rejected if the P-value is less than a.

This approach is often referred to as null-hypothesis significance

testing (NHST) and its limitations and statistical problems have

been described in great detail elsewhere (23,25,26). Despite the

shortcomings of NHST, the use of significance testing is engrained

in biomedical research and will likely remain in use for the foresee-

able future. The rest of this section provides guidance for reducing

the likelihood of reaching the wrong conclusion when using NHST.

Null-hypothesis significance testing in practice
One of the key criticisms leveled against NHST is that it does not

answer the right question. The investigator really wants to know the

probability that H0 is true given the collected data (e.g., the two diets

have the same effect on BMI), but NHST only provides the probability

of seeing the collected data given that H0 is true in the population.

NHST is therefore rooted in proof by negation, i.e. these data are

unlikely given that there is no actual difference. Proofs by negation

can be valid but are unreliable when the premise is based on probabil-

ities. This limitation means that NHST cannot prove the strict “if A

then B” relationship that researchers are often interested in.

Authors sometimes mistakenly assert that a large P-value (e.g., near

1) provides evidence that H0 is true (e.g., that two groups are equiv-

alent), when in fact it only suggests that there is insufficient infor-

mation to reject the null (27). Compare this to a court finding

someone “not guilty” instead of “innocent”: the person is first

assumed innocent, and there is not enough evidence to find them

guilty. If a researcher wishes to show a lack of a difference between

groups, one can perform an equivalency study. However, one cannot

test equivalency in a post hoc manner (28) and due to the complex-

ities of the design collaboration with a statistician is essential. Also

note that the standard NHST approach considers a two-tailed test,

where the alternative hypothesis allows for the mean difference to

be either positive or negative. One-tailed tests (that test for a differ-

ence in just one direction) are inappropriate in most circumstances.

The role of effect size in hypothesis testing
Errors in interpreting significance go beyond the classic issues of

Type I and Type II errors, including mistakes in interpreting the

experimental results that can occur if the investigator focuses solely

on the results of NHST while ignoring the magnitude of the associa-

tion, commonly referred to as the effect size.

A common case of this problem is touting the importance of a stat-

istically significant difference despite the estimated effect size being

scientifically insignificant. For example, one study concluded that

snacking “independently contributes to hepatic steatosis and obesity”

(29). However, the results showed an increase of only 0.8% in intra-

hepatic lipid content in the experimental group compared with the

control, with both groups remaining well within clinically acceptable

liver lipid concentrations.

Ignoring implausibly large magnitudes can also occur. Schoenfeld

and Ioannidis documented the effect sizes reported for associations

between reported food intakes and cancer and noted “implausibly

large effects, even though evidence is weak” (30). “[Taken] literally-

if we increase or decrease (as appropriate) intake of any of several

nutrients by 2 servings/day, cancer will almost disappear worldwide”

(7). The feasibility of results should be thoroughly considered during

the writing and review of the studies.

Some researchers focus primarily on the P-value and whether it is

under the ubiquitous significance level of 0.05. To provide greater

information and interpretability, additional statistics including confi-

dence intervals and measures of observed effect sizes must always

be reported (31). For example, statements of the form: “Treatment A

led to a 0.5-standard deviation reduction in Y” can help readers

judge the likelihood of a change of this magnitude in the population

of interest and whether the resulting change in the outcome is rele-

vant in practice.

A larger n may not lead to “better” results
A common mistake in thinking about statistical significance and

sample size is to assume that results only get better (i.e., smaller P-

values) by increasing the sample size. A common refrain when a

test is “close to significant” (e.g., P 5 0.051) is to suggest that a

larger sample size would have made it significant. Here, we discuss

why an increase in sample size may not lead to statistically signifi-

cant results.

Suppose that an investigator is testing the null hypothesis H0 : l 5 l0

vs. H1 : l 6¼l0, where l0 is a constant. This test can be based on

TABLE 1 Possible outcomes of a frequentist, 2-sided
hypothesis testing exercise

Unobserved reality in

the population (“Truth”)

Result of test based on

observed data

Do not reject H0 Reject H0

The 2 treatments are equivalent Correct Type I error

H0 is true
The 2 treatments are different Type II error Correct

HA is true
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T 5

ffiffiffi
n
p �X 2l0ð Þ

S
(3)

where �X and S represent the observed mean and standard deviation

of the variable of interest whose mean is being tested using a sam-

ple of size n. An increase in sample size may not lead to an increase

in T (and thus a decrease in the P-value) if the absolute difference

between �X and l0 decreases (resulting in a small numerator) or the

sample standard deviation S increases (larger denominator) in the

new sample. This behavior can be even more unpredictable when

the original sample is not representative of subsequent samples.

Difference in Nominal Significance is not
a Significant Difference
Randomized controlled trials (RCTs) are comparative studies in

which subjects are randomly assigned to receive either the interven-

tion(s) or the control (placebo or current standard intervention) with

the hypothesis that the novel intervention will have an effect on a

specific outcome (e.g., body mass, percent fat mass). The random-

ized group allocation is intended to produce comparable groups,

such that measured and unknown subject characteristics and varia-

bles at the time of randomization, on average, are balanced between

the groups. Typically, the study outcome is measured at baseline

and again at the end of the trial after a prespecified follow-up

period.

A frequently encountered error in the obesity literature involving

parallel group RCTs with pre- and post-intervention data is the use

of within-group paired tests as opposed to between-group tests.

Here, researchers base their inference on the difference in signifi-

cance of the outcome between the pre- and post-intervention meas-

urements rather than the significance of the difference between

groups. For example, Cassani et al. recently described an RCT of

the effect of flaxseed consumption on body weight and inflamma-

tory markers (32). The study incorrectly concluded that because the

inflammatory markers C-reactive protein and TNF-a decreased sig-

nificantly in the flaxseed group only, adding flaxseed to a weight-

loss diet could reduce these markers. The appropriate analysis

revealed no significant difference in the final outcomes between the

two groups (33). This type of erroneous inference was described by

Boutron et al. as one of the often encountered “strategies for spin”

in reports that typically focus only on the statistically significant

results (34). This within-group approach is invalid and can have a

false-positive rate for detecting a difference of up to 50% for two

treatment groups (and potentially higher for more than two groups)

(35). This is because the difference in nominal significance and its

true false-positive rate are actually functions of the power of the

paired tests to detect a pre–post difference within each group rather

than any difference in the effect of the intervention on the out-

come’s change over time. In less quantitative terms, if each arm has

50% power to detect a pre–post difference, then this analysis

approach is equivalent to flipping two coins and declaring a differ-

ence if they did not land on the same side.

In terms of practical interpretation, this analysis strategy does not

make sense. Consider two arms in a weight-loss trial: one with a

95% confidence interval of (0.1 kg, 1.9 kg) for a 6-week weight

loss and the other with interval (20.1 kg, 2.1 kg). The first arm

experienced a nominally significant weight loss over the 6-week

period while the second did not, but both arms report an average

weight loss of 1 kg over the 6-week period and the intervals are not

meaningfully different.

There are several ways to assess the treatment effect in parallel

group RCTs that involve pre- and post-intervention evaluation of the

outcome (36). The first, referred to as endpoint analysis or change
score analysis, involves calculating the change from baseline to

follow-up for each subject and running a two-sample t-test (two

treatment arms) or analysis of variance (ANOVA; three or more

arms) with the observed change as the measured outcome. The sec-

ond method, described as a baseline-adjusted analysis of covariance
(ANCOVA), analyzes the data in a linear model with the subjects’

follow-up values as the outcome and the treatment and observed

baseline values as the independent variables. The second method is

readily available in statistical software, is straightforward to run, and

typically has more power than endpoint analysis (37-39). Although

more complicated methods of analysis exist for this type of data

(36,40-42), the common theme among all proper methods for testing

a treatment effect over time is that the actual difference in the

change over time is tested between groups.

In summary, a researcher should never use the nominal significance

of a pre–post difference within a group to make inferences about

differences between groups.

Multiple Testing and P-Value Hacking
Data from RCTs and observational studies are often analyzed using

the NHST framework as part of the confirmatory analysis. Confirm-
atory analysis implies inferential analysis in which the variables,

model, and NHST to be conducted are specified before looking at

the data. Although in theory the Type I error rate of a NHST should

be governed by the costs of falsely rejecting a true hypothesis, the

de facto probability level in the literature is 5%.

Multiple testing refers to testing more than one hypothesis at a time

(43). One of the principles overlooked is that when many hypotheses

are tested the probability of getting at least one false-positive

increases. That is, the multiple tests lead to an inflated Type I error

rate unless correction procedures are applied. There are different

error rates, such as the false-discovery rate, error rate per hypothesis,

error rate per family, and family-wise error rate, and the choice

of error rate should depend on the experimental situation. For exam-

ple, in high-dimensional genomic studies where the cost of a Type I

error is not as large as in an intervention testing a drug or policy,

some authors have recommended using the false-discovery rate (44).

New methods are also being proposed to identify the right level of

Type I error for a given study after accounting for the cost of a

Type I error (45,46).

In this section, we focus our attention largely on the family-wise

error rate, defined as the probability of at least 1 Type I error in the

family. The practice of testing several hypotheses while controlling

the family-wise error rate raises the question, What is a “family” of

hypothesis tests? A “family” of hypotheses can be defined in at least

two logical ways: either in terms of testing several different outcome

measures for a given intervention or risk factor or in terms of
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comparing several interventions for a single outcome measure. For

example, if a diet and lifestyle weight loss study had primary out-

comes of weight, visceral adiposity (via MRI), and glycemic control

(via HbA1c), then the three can together be considered a family of

hypotheses. Furthermore, within a given experiment, the investiga-

tors may be testing the efficacy of multiple interventions (e.g., dif-

ferent diets). In this scenario, the hypothesis tests used to estimate

the efficacy of multiple intervention arms compared to the control

group constitutes a family of hypotheses. Regardless of the defini-

tion used, the family of hypotheses needs to be predefined and inde-

pendent of the analysis results. For RCTs following the CONSORT

guidelines, the definition of a family for the primary analysis should

be noted in the trial registration prior to the study (47,48). For sec-

ondary data analyses of existing RCT or observational data, for

which guidelines (e.g., STROBE) to register analyses have not yet

received widespread acceptance, this has come to be known as P-
value hacking (49,50).

Back in 1993, Mills noted, “If you torture your data long enough,

they will tell you whatever you want to hear” (51). P-value hacking,

in which investigators run different forms of analysis on a data set

until they find results that suit them, is one such practice of torture.

More commonly, the preference is to reanalyze data until a

“statistically significant” result is discovered under the assumption

that validly conducted NHST with nonsignificant results will not

lead to publication (52,53). A classic example of P-value hacking is

the practice of identifying subsets of data that lead to significant

findings. The findings for these subsets are then reported as if this

was the central question of the study.

Another way P-value hacking is introduced is through model selection

procedures such as stepwise regression. An important step in conduct-

ing NHST is choosing the covariates to be included in a model, which

ideally should be prespecified and based on some rationale derived

from existing knowledge. However, this aspect is often relegated to a

model selection process such as stepwise regression, a sequential vari-

able selection procedure for building a model in which variables are

added or removed based on stopping rules that may be based on the

significance of the fitted model (54). Implicit in stepwise regression is

a process of multiple hypothesis testing, which is often ignored. Thus,

the resulting model is not only overfitted to the data but also has an

inflated Type I error rate. Such model selection techniques implicitly

promote P-value hacking and should only be applied as exploratory

techniques to identify potential predictors from a test data set to be

validated in a different experimental data set (55).

There is debate in the field regarding whether multiple testing cor-

rection should be standard or if it should be left to the reader.

Although we cannot make a definitive statement on whether it

should be done, we do feel that failing to disclose multiple testing,

particularly iterative analysis strategies based on significance levels

like P-hacking, is an error. We feel that authors must be clear about

how many tests were run and how they came to their conclusions so

that readers can make informed interpretations of findings.

Cluster Randomized Trials
A cluster randomized trial (CRT) is an experimental design in which

specific social groups called clusters are randomized to interventions

(56). Commonly examined clusters include schools, clinics, and

neighborhoods; common interventions include changes to food envi-

ronments and policy changes. CRTs are not ecological designs,

although they share some characteristics. In fact, a distinguishing

characteristic of CRTs is that while randomization happens at the

cluster level, the outcome variables (such as BMI) are measured at

the individual level. CRTs are not multisite RCTs, in which persons

within a cluster are randomized to treatment conditions; in CRTs all

members of a given cluster are treated or not. In CRTs, subjects are

nested within clusters, and clusters are nested within experimental

conditions (57).

Clustering arises because persons within a given cluster are typically

more alike than persons between clusters. Consequently, there is

less independent information within a cluster than the total number

of subjects, meaning the effective sample size is smaller than the

actual sample size (57). Consequently, specific methodologies are

required to draw credible conclusions from CRTs.

Due to clustering, the total variance of the outcome variable consists

of between-cluster variance and within-cluster variance. The intra-

class correlation (ICC), typically denoted by q, is the ratio of the

between-cluster variance to the total variance of an outcome variable

and is viewed as a measure of the strength of clustering (58). The

design effect (DEF) is the ratio of the variance estimate of an

outcome variable taking the clustering into account to the variance

estimate of the outcome variable ignoring the clustering and can be

calculated as

DEF 5 1 1 ðm21Þq (4)

for clusters of equal size m. It must be noted that the number of

subjects is not necessarily the same in all clusters in CRTs; unequal

cluster sizes may lead to larger design effects and are therefore less

efficient than equal cluster sizes provided the same total number of

subjects, though this can rarely be controlled in a study (56).

Ignoring nesting and clustering effects in CRTs will cause inflated

Type I and Type II errors by underestimating the variance of inter-

vention effects and overestimating the degrees of freedom (df) in

the hypothesis testing (59). Some researchers incorrectly state that a

small ICC will not inflate variance estimates too much and therefore

claim it is not necessary to take clustering into account. However,

the design effect can still be large given a small ICC if the cluster

size is large, which is the common situation in CRTs. For example,

in a school-based obesity intervention trial with an average of 100

students per school and an ICC of 0.01, the design effect will be

1.99, which suggests that the “true” variance will be twice as large

as the variance estimate when clustering is not taken into account.

Similarly, the df available for statistical inference is limited by the

number of clusters in the study. For a hypothetical two-armed CRT

with K 5 10 clusters in each arm and m 5100 subjects in each clus-

ter, there will be N 5 2Km 5 2000 total subjects. In this case, the

available df to test the intervention effect is only 2(K 2 1) 5 18

rather than N – 251998. Although the N can be very large, the fact

that there are typically only a small number of clusters in CRTs

makes the df for hypothesis testing of intervention effects very lim-

ited. Consequently, a test statistic using appropriate denominator df

of 2K 2 2, such as a t test or an F test, should be used. Other tests,

such as v2 or z tests based on large sample approximations, can lead
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to false-positive results as they assume infinite df. Many software

packages do not provide the correct df automatically; special pro-

gramming is required to obtain the proper df in hypothesis testing,

even in models in which the ICC is correctly considered for the var-

iance estimation.

An extreme case is the “one-cluster-per-condition,” i.e., K 5 1, in

which no valid statistical inference on intervention can be obtained

regardless of cluster size because of the zero df [df 5 2(1 2 1)]. In

other words, the intervention effect cannot be differentiated from the

cluster effect. Therefore, the one-cluster-per-condition design should

be avoided unless one is collecting pilot data to estimate the ICC

for the power calculation of a subsequent CRT.

In summary, CRTs require special analytical methods to account for

the within-cluster correlation and the df being limited by the number

of clusters rather than the number of subjects, even when the corre-

lation is hypothesized to be small. Understanding of these points is

critical in designing and analyzing CRTs for valid statistical infer-

ences, and consulting from experienced statisticians is highly

recommended.

Misconceptions of Nonparametric Tests
Some of the most common misconceptions in statistical practice are

that nonparametric tests are “distribution free,” “assumption free,”

or less powerful than their parametric counterparts. We will use the

Kruskal–Wallis (KW) test (i.e., Mann–Whitney U, Wilcoxon rank

sum) as an example of a nonparametric counterpart to the paramet-

ric independent samples t-test or one-way ANOVA; however, these

misnomers also occur for many other nonparametric procedures.

The rank-based KW test is a variation of performing an ANOVA (a

parametric test) on ranks (e.g., the lowest value is 1, the second lowest

is 2, and so on). For smaller sample sizes, an exact P-value can be

computed based on the permutation of the ranks without assuming a

distribution for the outcome or residuals. As sample size increases, the

permutation distribution becomes more difficult to compute since the

number of permutations for a one-way design with J groups is

N !

n1!n2! � � � nj! � � � nJ !
(5)

where
PJ

j51 nj5N is the total sample size. For two groups with

sample sizes of n1 5 7 and n2 5 6, the number of permutations is

13!/(7!6!) 51,716, which is large but still computationally feasible.

For a study with 30 subjects in 3 groups (n1 5 n2 5 n3 5 10), there

are approximately 5.55 trillion possible permutations. Thus, it does

not take a large or complicated study to make the calculation of

exact P-values unreasonable. Fortunately, as the sample size

increases the permutation distribution underlying the test approxi-

mates a scaled chi-square distribution with J 21 df (60). Therefore,

for designs with a prohibitively large number of permutations,

researchers can use the KW approximate chi-square test but doing

so requires the assumption that the test statistic has a parametric

distribution.

The assumptions of the parametric ANOVA model involve normal

independent distribution of errors with a mean of zero and a con-

stant variance for all observations (homoscedasticity), denoted as

NID(0,r2). For the KW test, if the observations are not independent

[i.e. repeated measures (61,62) or clusters (63)] the permutation dis-

tribution is invalid and other rank-based procedures must be used. In

the strictest sense, rank-based statistics test a null hypothesis of two

groups having the same distribution (64-66), although the rank-

based tests are especially sensitive to differences in location (i.e.,

one distribution is shifted up or down) (67). If one assumes that the

errors are independent and identically distributed [IID(0,r2)] but not

necessarily normal, then rank-based procedures test differences in

location (64). Zimmerman (1996) showed that heteroscedasticity in

the original data will be inherited by a rank transformation (68),

therefore unequal sample sizes and unequal variance will also affect

the Type I error rates of rank-based tests (69).

In terms of statistical power, many statistics texts note that the

asymptotic relative efficiency (a measure of power) of a rank-based

test relative to the parametric t-test is 3/p 5 0.955 under the para-

metric NID(0,r2) assumptions. But, for many asymmetric, homosce-

dastic error distributions [IID(0,r2)], rank-based tests have more

power than their parametric counterparts (70). Furthermore, if the

null hypothesis of the parametric t-test is true (i.e., the means are

equal) but the groups differ in their distributional shapes, the rank-

based test will have statistical power to detect a difference between

the groups. To illustrate, suppose a control group has a positively

skewed distribution with a mean BMI of 26 kg/m2 and a standard

deviation of 3. Suppose a treatment group with a negatively skewed

distribution, mean of 26 kg/m2, and standard deviation of 3. These

two groups will differ in their 1) distributional shape, 2) medians

(and other quantiles), and 3) number of high scores (which will be

larger in the treatment group). In this situation, the null hypothesis

for the parametric t-test is true (i.e., the means are identical) but the

distributions are not identical and a rank-based test will detect these

types of distributional differences. If researchers are comfortable

with not focusing on a single parameter (i.e., mean difference) and

rejecting a different null hypothesis of “stochastic heterogeneity”

(i.e., the distributions are not equal), then non-normality and hetero-

scedasticity are not necessarily “nuisances” or “violations” but rather

a part of the results (66).

In summary, nonparametric tests are not necessarily “distribution

free” because large-sample approximate tests are assumed to follow

known distributions. Nonparametric procedures may “relax” some of

the parametric assumptions; however, they are not “assumption free”

because the independence assumption is crucial to the permutation

distribution underlying the test statistics. They are also not necessar-

ily less powerful than their parametric counterparts and in some

cases are more powerful.

Handling of Missing Data
Missing data are ubiquitous in research: people drop out of random-

ized trials or don’t respond to individual survey questions. Incor-

rectly handling missing data can yield incorrect research results. We

present solutions to missing data that can be used in practice.

A common (but inappropriate) approach to handling missing values

is to simply ignore them, in the sense of dropping from the analysis

individuals who have missing values for the variables of interest.
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This is called complete case or listwise deletion and is often the

default in statistical software packages. Unfortunately, complete case

analyses have reduced statistical power and may yield incorrect

answers if missing values systematically differ from observed val-

ues. For example, in a randomized trial of an obesity reduction pro-

gram, individuals who had high BMIs at baseline or who were not

successful at losing weight may be more likely to drop out of the

study. Analyzing only those individuals with observed outcomes

may not yield results applicable to the full study population.

A second common, but generally inappropriate, strategy is single
imputation, whereby researchers “fill in” (or “impute”) the missing

values once. Types of single imputation include mean imputation,

regression-based imputation, hot-deck imputation, last observation

carried forward, and a missing data indicator approach. None of

these is an appropriate strategy (71,72), and they are listed only so

they can be recognized and avoided. Single imputation approaches

yield incorrect results as they will overstate the precision of the

study results: standard errors will be smaller than they should be

and P-values will be more significant than they should be. This is

because single imputation does not account for the uncertainty in

the imputations: the analysis is done as if the imputed values are the

true, actual values, when in fact they are not.

A better, and very flexible, approach for handling missing data is

multiple imputation, which essentially repeats the regression-based

or hot-deck single imputation approaches (which use observed val-

ues and known covariates to predict the unobserved values) multiple

times. Multiple imputation creates multiple “complete” data sets.

Analyses are then conducted separately within each data set and the

final results are obtained by combining the data set-specific esti-

mates using established formulas (73). The key distinction from sin-

gle imputation is that the variance accounts for the variability within

each data set as well as across imputations. The result is accurate

standard errors that account for the uncertainty in the imputations.

Software for creating multiple imputations and analyzing multiply

imputed data is now readily available in SAS, Stata, and R, among

other packages (see, e.g., http://www.stefvanbuuren.nl/mi/Software.

html). Maximum likelihood and weighting approaches can also be

appropriate methods for handling missing data in some analyses and

data settings but are less versatile than is multiple imputation. See

White et al. (2011) or Carpenter and Kenward (2013) for a summary

of practical considerations in conducting analyses using multiple

imputation, including implications for randomized trials (74,75).

Of course, avoiding missing data in the first place is the best strategy

(71). Best practices for research should include 1) limiting missing data,

2) documenting the extent of missing data and exploring the reasons for

missing data, and 3) prespecifying, and then using, an appropriate

method for handling missing values, such as multiple imputation.

Calculation of Effect Sizes for Meta-
Analyses
Meta-analyses place literature reviews on objective quantitative

ground by calculating a formal quantitative measure of the magni-

tude of the effect or association under study, called the effect size.

We use the term effect size to broadly denote any quantitative mea-

sure of the estimand under study in a meta-analysis and its use does

not necessarily imply a cause and effect relationship. There are

many measures that could be considered an effect size (e.g. Pearson

correlation, Cohen’s d, Phi coefficient) but no single one is best in

all situations or is always appropriate. Almost all effect sizes can be

transformed via some calculations to another with a one-to-one

relationship (76-78), though one should note that different measures

may not be directly comparable (particularly if the variables under

study have different forms).

Common effect size errors
Although the pooling of effect sizes is relatively easy with meta-

analysis software, that ease may belie the complexity of the underly-

ing decisions and procedures involved in properly calculating the

effect sizes which could lead to errors.

Perhaps the most thorough analysis of common errors in the calcula-

tion of effect sizes in meta-analysis was published by Gøtzsche

et al. (79). Gøtzsche et al. studied published meta-analyses that used

standardized mean differences (SMDs, sometimes referred to as

Cohen’s d) and spot-checked the calculations against the original

papers. Of the 27 meta-analyses considered, 10 were found to have

discrepancies in SMD calculation, 17 contained errors, and 3 had

the overall conclusion change or be refuted to the point of

retraction.

In our own work of reading published meta-analyses, we have also

observed that errors in the calculation of effect sizes are common

(80) and often fall into two major categories. The first involves a

faulty imputation procedure. The second involves miscalculation of

or incorrect choice of a variance.

With respect to imputation procedures, if an original article does not

report the data to calculate an effect size exactly (e.g., reporting a

result as “non-significant”), there are ways to try to back-calculate

(81) or as a last effort impute the missing data (82). What should

not be done, however, is to set the effect size of a non-significant

effect to zero or choose an arbitrary P-value greater than 0.05

(83,84). These errors are reminiscent of missing data issues dis-

cussed in the previous section Handling of Missing Data.

With respect to variance, the challenge seems to be in understanding

which variance is desired in a particular situation; this affects not

only the calculation of SMDs but also the variance of the meta-

analyzed effect size itself and weighting factors used. Most often,

the variance desired is the within-group among-subject variance in

the outcome measure. This value can be used to standardize differ-

ent measurement scales to construct SMDs (85). However, a meta-

analyst can run into trouble if different types of variance are used to

scale the SMDs, particularly when the studies in the meta-analysis

have a pre–post design. In this case, the several different variances

(e.g., post only, pre and post pooled, post minus pre) one could

choose to use as a denominator for an SMD (86) have different

implications. The appropriate choice of variance is context-

dependent, so it falls to researchers to consider which has the most

scientific merit for their topic and report their choice and rationale.

One must also take care in determining whether covariates were

included in the analysis reported by a study. Although in RCTs

covariates should not affect the raw size of an effect (e.g. mean dif-

ference) (87), their inclusion may reduce the residual variance of the
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overall model (39). Combining an effect size calculated from this

reduced residual variance with effect sizes calculated from studies

that did not include the same covariates is comparing apples and

oranges. Such errors are discussed elsewhere (83).

The final situation we will consider in which choice of the variance

seems to confuse many investigators involves CRTs (3,88,89). The

key point of confusion seems to be whether to use the within-

condition among-cluster variance or the within-population among-

subject variance for the meta-analysis. Although the former may be

appropriate for NHST (3), if one is including CRTs and ordinary

RCTs in a single meta-analysis the latter is appropriate.

Recommendations
First, investigators should specify how the effect sizes and corre-

sponding standard errors were calculated and do so with greater

completeness and precision than is common practice today. Second,

we suggest that doing meta-analysis well requires collaboration with

someone with advanced training in meta-analytic calculations.

Ignoring Regression to the Mean
Regression to the mean (RTM) is a statistical phenomenon that

occurs when repeated measurements are made on the same subject

or same unit of observation. When observed values have random

error (i.e., nonsystematic variation around the true mean), subse-

quent observations tend to regress to the population mean. Francis

Galton first recognized this phenomenon over a century ago and

described it using the heights of parents and children (90). In this

classic description, when parents were taller than the population

average, their children tended to be shorter than the parents

(regressed down toward the mean), and when parents were shorter

than average the children tended to be taller than the parents

(regressed up toward the mean).

RTM can be worsened when categorizing subjects on the basis of

baseline measurements for two reasons (91). For example, blood

pressure is often categorized as normal, pre-hypertension, and hyper-

tension (92). First, when each category is defined on the basis of its

distance from the population mean, examining only subjects at the

extremes (e.g., those with hypertension) will always result in greater

RTM than examining subjects nearer to the mean. Investigators may

not find an overall group effect, but will when they sample the pop-

ulation asymmetrically (93). Second, if one measure of blood pres-

sure is either much higher or much lower than the mean, a second

measure will likely be closer to the mean. An average of multiple

measures can be used to reduce RTM due to random variation.

However, RTM also represents a change in the true value of a vari-

able over time, not only random variation. An individual whose true

blood pressure is high will tend to have a lower blood pressure at

subsequent time points. Whenever two variables are not perfectly

correlated, true values will always regress to the mean regardless of

measurement error, the order of measurement, or whether the two

variables are repeated measures of the same construct.

One of the most common errors associated with RTM, particularly

in obesity literature, is concluding that an intervention is effective

when the study design does not permit such a conclusion. School-

based interventions appear particularly susceptible, because RCT

designs are less common. These interventions often ignore the effect

of RTM, reporting reductions in BMI z-score (94,95) and prevalence

of obesity (96) compared only to baseline. Community-based inter-

ventions make similar claims based on comparisons to baseline,

reporting success in reducing weight and blood pressure (97) even

when lacking a control group (98).

Another interpretation error that can be caused by RTM is an

assumption of differential treatment effects based on baseline values

of the outcome variable. For instance, studies may use greater

declines in BMI among participants with higher baseline BMI than

those with lower baseline BMI as evidence for differential treatment

efficacy by baseline BMI (99,100). Differential weight changes as a

function of baseline BMI would be expected solely from RTM. The

only way to determine differential treatment based on baseline val-

ues is through the use of a control group and testing for an interac-

tion between baseline value and treatment.

The clearest way to avoid RTM leading to unsubstantiated infer-

ences about efficacy is through the use of an appropriate control

group, ideally by random assignment of the study subjects. RTM

then becomes an untenable explanation for any difference in out-

come between the two groups (101). When true RCTs are not feasi-

ble, reasonable alternatives should be implemented. For example, if

equity concerns are raised in the randomization of a school-based

intervention, alternatives such as crossover trials should be consid-

ered. Nonrandomized comparator groups, imperfect but still useful,

can be identified through alternative designs, such as use of a con-

temporaneously measured unexposed cohort with similar characteris-

tics. Finally, quasi-experimental designs provide stronger evidence

than do uncontrolled interventions in which investigators simply

look at change from baseline and a group of treated cases (102).

Ignoring the potential effects of RTM can lead to unsubstantiated

inferences about the effects of treatments that can lead to wasted

time, money, and other societal resources and distract from alterna-

tive interventions that may be more valuable.

Ignoring Conformation Bias
Sackett, regarded as the father of evidence-based medicine (103),

listed an expansive catalog of sources of bias that can occur at each of

the seven general stages of research, from “reading-up on the field” to

“publishing the results” (104), and may lead to statistical and other

inferential errors. However, one important source of bias is missing

from Sackett’s list: confirmation bias. This bias is the tendency for

researchers to evaluate analytical results less critically when the

results are consistent with their prior beliefs of the study outcome or

the hypotheses they are aiming to prove. Well-formulated hypotheses

based on past research experiences and findings are crucial for

advancing knowledge. At the same time, a very strong scientific

rationale or premise for conducting a new study may lead to

overconfidence in one’s current findings if they are in the expected

direction, leading investigators to check them less thoroughly than

results that are unfavorable or counterintuitive to their hypothesis. On

the other hand, if results are not in the expected direction, confirma-

tion bias can place improper influence on the conduct of data analysis.

Confirmation bias can be manifested in many ways, including fail-

ure to identify data entry, coding, programming, and other errors, as
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well as overlooking the potential for confounding in the experimen-

tal design or analysis. With regard to the latter, observational studies

may be more vulnerable to the effects of confirmation bias than

RCTs. For example, an observed association between incidence of

lung cancer and weight could be biased if smoking status was not

well controlled. Similarly, in genetic studies, ignoring population

stratification could lead to the wrong conclusion regarding the effect

of a locus on risk of disease.

Randomized clinical trials are not entirely immune to the effects of

confirmation bias. For example, suppose that a randomized trial is con-

ducted to evaluate the impact on weight loss of a lifestyle intervention

and that intake of weight-loss pills was allowed for ethical reasons in

both the intervention and control arms. If the intervention group had a

higher rate of weight-loss pill intake than in the control group, the

effect of the intervention would likely be overestimated. Insufficient

control for use of the weight-loss pill due to confirmation bias may

lead to erroneous claims about the benefits of the intervention.

How can we prevent or minimize such confirmation biases in

research? The following suggestions, although perhaps onerous and far

from exhaustive, may help: 1) At the design stage, statisticians should

communicate closely with investigators to thoroughly understand the

research setting; identify potential sources of error, confounding, and

bias; and determine the most pertinent statistical methods and analytic

strategies for the study. Also, sensitivity analyses should be an impor-

tant component of any statistical plan to ensure that study findings are

robust to different analytic approaches. 2) In the analysis, the statisti-

cian should adhere as closely as possible to the analytical plans that

were determined a priori, and investigators should ideally not be

involved in the data analysis. To further ensure that data are properly

handled and analyzed, large observational studies should have an inde-

pendent data monitoring committee the way most clinical trials do.

Most importantly, data analysis should not be guided or influenced by

the indications of results. 3) Whenever possible, parallel data analyses

by an independent statistician should be conducted to confirm the

results of the study statistician. 4) Each aspect of data collection, stor-

age, cleaning, analysis, and output should be logged and archived for

review to enhance the reproducibility of the analytic results. These

steps are also consistent with the recent recommendations by the

National Institutes of Health to enhance scientific reproducibility and

transparency through rigorous experimental design, appropriate ana-

lytic approaches, and other sound statistical practices (105).

As Popper stated, “Those among us who are unwilling to expose

their ideas to the hazard of refutation do not take part in the scien-

tific game” (106). All of us should be open to such refutability of

study findings, perhaps for the very reason that no study findings

may be free from any sources of bias including confirmation bias.

Errors in Reporting
Here we briefly outline types of common reporting errors: 1) insuffi-

cient detail on methods and results, 2) unclear statement of primary

and secondary outcome variables, and 3) the use of causal language

without appropriate data to support such conclusions.

An error of insufficient detail occurs when pertinent information

has not been included in the manuscript, hampering a reader’s abil-

ity to check the validity of the analysis and a researcher’s ability

to include the work in a meta-analysis. The most common of these

errors involve insufficient precision in reported values or P-values,

such as reporting an odds ratio of 1.3 (95% confidence interval:

1.0, 1.5) or reporting a P-value as NS (not significant). Although it

is not useful to give overly precise values, inherently unstable esti-

mates such as odds ratios would benefit from two to three decimal

places at a minimum. Fortunately, this is an easy problem for an

author to correct.

Additionally, omission of details about the exact modeling approach

is common and easily avoidable. Statistical analysis sections of

papers should not only report what software was used to analyze the

data but also the exact routines and options such that the analysis

could be reproduced by a third party. The needed level of detail

includes the exact variables used and how the variables were used

in the model. Most desirable would be the inclusion of syntax in an

online supplement or appendix. Simply stating that “the general lin-

ear model was used in SAS” is inadequate.

Another reporting error is the lack of clarity on outcomes of interest.

In this era of “big data,” researchers can increasingly assess many

different potential outcomes without clear hypotheses a priori. The

choice of the outcomes to highlight is one of the many so-called

“researcher degrees of freedom,” coined by Uri Simonsohn (107)

and popularized by Gelman (108,109), that refers to the many

choices that researchers make during the design, execution, and

analysis of an experiment that may impact the results.

The last form of reporting errors we will discuss is the use of causal

language in nonrandomized studies. Particularly in obesity research,

scientists sometimes attempt to explain the mechanisms behind

observed associations. However, nonrandomized studies can, at best,

only provide information about correlations among the variables, not

causality. While it may be tempting to imply that the outcome is

logically or chronologically subsequent to the variables being treated

as its predictors, support for such an assumption cannot come from

the data values themselves. While we may assume that gene expres-

sion may be driving a phenotype and not vice versa, we may not

claim that consumption of a particular item causes obesity merely

because the two are associated in cohort studies. Rather, one of

these cases might be in play:

� Reverse causality: Instead of X causing Y, Y may cause X.

� Third-variable situations (nonmediators): Some unobserved vari-

able M may be causing X and may be causing Y. Without condi-

tioning on M, there will be an association between X and Y.

� Third-variable situations (mediators): X causes M and M causes Y,

so M is mediating the effect of X on Y. Distinguishing effects of

third-variables requires support from additional data that can elu-

cidate the causal and temporal pathways between the variables

(110).

Thus, the use of causal language such as ‘the effect of,” “causes,”

or “influences” is not appropriate when discussing nonrandomized

studies. Softening phrasing, such as “may cause,” does not amelio-

rate this concern. Even a phrase such as “is linked to,” which prop-

erly denotes association, has causal connotations and should be

avoided. Stronger statements of the limitations of the data and the

conclusions that can be drawn are needed, even when biological

plausibility exists.
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Discussion
Considering frequent appearance of these errors in the literature, it is

clear that obesity researchers need more rigorous statistical support

and training. This could come from course work during graduate or

postdoctoral training or from workshops or short courses. Utilization

of published guidelines such as CONSORT (48) or PRISMA (111)

may also be useful for producing valid research. Furthermore, we

speculate that including a statistician in both the research and report-

ing stages of the scientific process may produce higher quality, more

valid, and more reproducible results. We hope that tutorials such as

this can help researchers to implement proper statistical practice and

to know when to seek the help of a statistician.O
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