Systematic review and Meta analysis in Healthcare

Rahul Mhaskar

Assistant Professor

Clinical and Translational Sciences Institute Division and Center for Evidence based Medicine and Health Outcomes Research Department of Internal Medicine Morsani College of Medicine

May 22, 2013

Outline

- Introduction
- Systematic review vs. narrative review
- The rationale for conducting a systematic review
- Steps of a systematic review

Case

A 60 year old woman with multiple myeloma is referred to a cancer center for the management of his bone disease. The attending physician wants to decide whether the patient should be treated with bisphosphonates?

Does bisphosphonates help in reducing fractures in patients with multiple myeloma?

Like Sally Field, you, too, can help protect your bones with once-monthly BONIVA.

CENTER FOR EVIDENCE

BASED MEDICINE

The (conflicting) evidence !

BASED MEDICINE

- Randomized controlled trial 1:
 - Bisphosphonates reduce the number of vertebral fractures in patients with multiple myeloma
- Randomized controlled trial 2:
 - Bisphosphonates have no effect on vertebral fractures and in fact bisphosphonates can lead to osteonecrosis of jaw (ONJ).

The need for research synthesis

- Health care decision makers need to access <u>research evidence to</u> <u>make informed decisions</u> for both individual patients and populations.
- There are only few important questions in health care which can be informed by consulting the result of <u>a single</u> empirical study.

Types of review articles

Are all reviews equal?

- In <u>1987</u>, researchers examined <u>50 review articles</u> published in 4 major general medical journals [Annals of Internal Med; Archives of Internal Med; JAMA; New Engl J Med]
- Findings:
 - 80% addressed a focused review question
 - 2% described the method of locating evidence
 - 2% used explicit criteria for selecting studies for inclusion
 - 2% assessed the quality of the primary studies
 - 6% performed a quantitative analysis

Mulrow C. The medical review article: state of the science. Annals Int Med 1987;106:485-88.

Are all reviews equal?

- In <u>1999</u>, the survey was repeated.
- This time <u>158 reviews</u> published in 6 major general medical journals [Annals of Internal Med; JAMA; New Engl J Med; BMJ; Am J Med; J of Int Med]
- Findings:
 - 34% addressed a focused review question
 - 28% described the method of locating evidence
 - 14% used explicit criteria for selecting studies for inclusion
 - 9% assessed the quality of the primary studies
 - 21% performed a quantitative analysis

McAlister et al. The medical review article revisited: has the science improved? Annals Int Med 1999;131:947-51

Systematic vs. narrative reviews

Core Feature	Narrative Review	Systematic Review
Study question	Often broad in scope	Often a focused clinical question
Data sources and search strategy	Which databases were searched and search strategy are not typically provided	Comprehensive search of many databases as well as so-called gray literature; explicit search strategy
Selection of articles for study	Not usually specified, potentially biased	Criterion-based selection, uniformly applied
Article review or appraisal	Variable, depending on who is conducting the review	Rigorous critical appraisal, typically using a data extraction form
Study quality	If assessed, may not use formal quality assessment	Some assessment of quality is almost always included as part of the data extraction process
Synthesis	Often a qualitative summary	Quantitative summary (meta-analysis) if the data can be appropriately pooled; qualitative otherwise
Inferences	Sometimes evidence-based	Usually evidence-based

UNIVERSITY OF SOUTH FLORIDA

9

BASED MEDICINE

Research synthesis: systematic review and meta analysis

Systematic Review (SR)

 "The application of strategies that limit bias in the assembly, critical appraisal, and synthesis of all relevant studies on a specific topic. Meta-analysis may be, but is not necessary, used as part of this process."

Meta-Analysis (MA)

 The statistical synthesis of the data from separate but similar, i.e. comparable studies, leading to a quantitative summary of the pooled results."

Courtesy: Dr. Djulbegovic

10

Last JM. Dictionary of Epidemiology, 2001

The rise of SR/MA

HEALTH

SR/MA publications in 2012: World

UNIVERSITY OF SOUTH FLORIDA

Ethical and (regulatory) obligations

- Clinical trials should be <u>preceded</u> by a systematic review and should be reported with a <u>discussion</u> of assessing the trial's results in the context what is already known
 - Ethical requirement for updating systematic reviews

JAMA 1998;280:280-282;Lancet 2001:358:1648

- Mandating search or conduct of SR before a new clinical trial is done
 - Required in UK, Denmark, Holland
 - Peer-reviewed high impact journals require discussion of current findings in the context of a SR. (Lancet, JAMA etc.)

Chalmers I. Clin Trials 2005;2:229-31; Young C, Horton R. Lancet 2005;366:107-8

Case studies: rationale for SR/MA

UNIVERSITY OF SOUTH FLORIDA

Case Study 1: "Egg on their faces: the story of human albumin solution"*

- Human albumin solution, a blood product, has been used in the treatment of blood loss and burns since the attack on Pearl Harbour over half a century ago.
- In 1996, the global albumin market was worth \$ 1.5 billon
- But is human albumin administration beneficial?

*1. Roberts I, et al. Egg on their faces. The story of human albumin solution. Eval Health Prof. 2002;25(1):130-8.

2. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 1998;317:235-40.

Courtesy: Dr. Pai

"Egg on their faces: the story of human albumin solution"

- SR of RCTs comparing albumin with crystalloid was conducted by the Cochrane Injuries Group.
- 30 RCTs including 1,419 randomised patients identified.
- Meta-analysis showed that the <u>risk of death</u> among those treated with <u>albumin was higher</u> than in the comparison groups.
- The pooled risk ratio was 1.68 (95% CI 1.26, 2.23)

Roberts I, et al. Egg on their faces. The story of human albumin solution. Eval Health Prof. 2002;25(1):130-8.

"Egg on their faces: the story of human albumin solution"

- The results were widely reported in the media and stimulated an immediate response from the regulatory agencies, the industry and the medical profession.
- The industry launched a "Albumin Support Programme" to resuscitate the ailing \$ 1.5 billion global albumin market. The objective was to disseminate evidence supporting albumin:
 - the preparation of literature reviews supporting the use of albumin to be sent to leading regulatory authorities
 - preparation and dissemination of a Cochrane critique dossier
 - the establishment of a medical advisory panel to write articles supporting the use of albumin.
- The industry set aside \$2.2 million for the program.

Roberts I, et al. Egg on their faces. The story of human albumin solution. Eval Health Prof. 2002;25(1):130-8.

"Egg on their faces: the story of human albumin solution"

Roberts I, et al. Egg on their faces. The story of human albumin solution. Eval Health Prof. 2002;25(1):130-8. 18

Case study 2: "Is passive smoking harmful?"

- A topic of great debate and controversy for many years
- First few epidemiologic studies were published in <u>1918</u>
- Vigorously attacked by the tobacco industry
 - Too small an association
 - Potential bias
 - Potential confounding
 - Lack of biological proof
- Evidence accumulated over the <u>next 2 decades</u>
- It was not until about 15 years ago when several official bodies/agencies concluded that passive smoking is a cause of lung cancer
 - The tobacco industry continues to dispute this claim!!

Hackshaw AK et al. BMJ 1997;315:980-88. Hackshaw AK. Stat Meth Med Res 1998;7:119-136.

"Is passive smoking harmful?"

- Hackshaw et al. conducted a SR in 1997:
 - They identified 37 published studies that reported risk of lung cancer among lifelong non-smoking women according to the husband's smoking status
 - Their meta-analysis revealed that the overall <u>risk of</u> <u>lung cancer</u> among lifelong non-smoking women was <u>1.24 times higher</u> when their husbands smoked, as compared to those women whose husbands did not smoke.

Hackshaw AK et al. BMJ 1997;315:980-88. Hackshaw AK. Stat Meth Med Res 1998;7:119-136.

"Is passive smoking harmful?"

UNIVERSITY OF SOUTH FLORIDA

Case study 3:Streptokinase in acute myocardial infarction

UNIVERSITY OF SOUTH FLORIDA

Courtesy of Dr. Djulbegovic

HEALT

Steps of SR/MA

UNIVERSITY OF SOUTH FLORIDA

Steps of a systematic review

Research protocol

- Formulating a research question
- Search of relevant literature
- Data extraction and quality appraisal
- Synthesis (+ / meta analysis)
- Interpretation

Protocol

- Type of SR: Intervention / diagnostic etc.
- Title
- Authors
- Background
- Objectives (research question in PICO format)
- Methods
- Criteria for considering studies for this review
 - Types of studies
 - Types of participants
 - Types of interventions
 - Types of outcome measures
- Search methods for identification of studies
- Data collection and analysis
 - Data extraction and assessment of methodological quality
- Data synthesis (meta analysis)
 - Sensitivity analysis
- Contributions of authors
- Declarations of interest

Research question

- Patients: patients diagnosed with multiple myeloma
- Intervention: bisphsophonates
- Control: placebo / no treatment / other bisphosphonates
- Outcomes: vertebral and non vertebral fractures

Search for the evidence !

Literature search

Talk to the Librarian (John). He is a very helpful guy 😳

- <u>Electronic databases</u>: Medline, Cochrane library, Embase, Lilacs etc.
- Meeting abstracts: ASH, ASCO etc.
- Web: WWW.clinicaltrials.gov
- ((("MultipleMyeloma"[Mesh]OR"Plasmacytoma"[Mesh]ORmultiplemyelomaOR plasmacytomaOR plasmacytom*ORmyelom*)
- AND(bisphosphonatesOR pamidronate OR zoledronateOR etidronateOR ibandronate OR clodronateOR "Clodronic Acid"[Mesh]
- AND ((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading])

Inclusion and exclusion criteria

- Included studies: RCTs in which interventions consist of bisphosphonates against placebo or no treatment or other bisphosphonates in multiple myeloma patients.
- Excluded studies: Duplicate reports, sub group analysis and studies with fewer than 10 patients.

UNIVERSITY OF SOUTH FLORIDA

Data extraction

Define the outcomes a priori:

- Number of participants with disease progression, time to progression, presence of pain (as defined by individual authors),
- incidence of hypercalcemia (defined as: =>2.65 mmol/L),
- adverse events (grade III/IV)
- Two review authors will extract all data, and resolve disagreements by consensus.
- After the extraction, a third review author will recheck all data.

Methodological quality assessment

- Risk of bias
- Random error

Which clinical studies are (less) biased?

- 1. All studies published in BMJ, Lancet, JAMA or NEJM
- 2. All publicly funded studies
- 3. All studies with more than 100 patients
- 4. All registered studies
- 5. Don't know

Was it a fair race? Critical appraisal

Fair start?

Generation of sequence Allocation concealment

Pre-specification of alpha and beta error

Few drop outs?

Description of drop-outs ITT analysis

Fair finish?

ITT analysis Outcome reporting bias?

Methodological quality of the included studies

Quality assessment tool for RCTs

- Assessment of risk of bias
 - Generation of randomization sequence
 - Allocation concealment
 - Description of withdrawals and drop-outs
 - Intention to treat analysis
 - Blinding methods and who were blinded
- Assessment of risk of random error
 - Pre-specification of alpha and beta error
 - A priori calculation of sample size

Newcastle Ottawa scale for observational studies

The Good The Bad The Ugly (studies)

- We need to include ALL the studies that fulfill the *a priori* set inclusion criteria. Then:
- Conduct a critical appraisal of ALL the included studies.
- We do not pick and choose..

UNIVERSITY OF SOUTH FLORIDA

CENTER FOR EVIDENCE

BASED MEDICINE

Data extraction contd.

Method of generation of randomization sequence is considered to be:

- Adequate: if computer generation or table of random number was used;
- Unclear: not reported, or,
- Inadequate: e.g., quasi-randomized.

Allocation Concealment is considered to be:

- Adequate: if central randomization, sealed envelopes, or a code provided by a pharmacy or a company was described in the study;
- Unclear: not reported, or
- Inadequate: e.g., open table of random numbers.

Methodological quality appraisal

BASED MEDICINE

HEALTH

Quantitative data synthesis

Study_id	Inn_Rx	Std_Rx	Event Inn	Noevent Inn	Enrolled Inn	Event Std	Noevent Std	Enrolled Std	LnRiskRatio	SeLnRR
Delmas_1982	Clodronate	Placebo	1	6	7	2	4	6	-0.84729792	1.091089
Lahtinen_1992	Clodronate	Placebo	32	76	108	38	57	95	-0.30010464	0.1943713
McCloskey_2001	Clodronate	Placebo	41	67	108	60	49	109	-0.37155583	0.1504106
Menssen_ 2002	Ibandronate	Placebo	21	78	99	20	79	99	0.04879016	0.2782392
Kraj_2000	Pamidronate	No_RX	15	8	23	16	7	23	-0.06453852	0.2054511
Terpos_2000	Pamidronate	No_RX	0	32	32	3	27	30	-2.00843076	1.491024
Berenson_1998	Pamidronate	Placebo	31	167	198	49	130	179	-0.55871436	0.2050101

Meta analysis is not simple addition !

Meta analysis

	Bisphosphor	nates	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.3.1 Clodronate							
Delmas 1982	1	7	2	6	0.7%	0.43 [0.05, 3.64]	
Lahtinen 1992	32	108	38	95	20.2%	0.74 [0.51, 1.08]	
McCloskey 2001	41	108	60	109	31.7%	0.69 [0.51, 0.93]	T
Total events	74	223	100	210	32.0%	0.70 [0.50, 0.89]	•
Hotorogonoity: Tou ² -	(4 0.00\Chi≅ – 0.	70 df-	2 (P = 0.)	96) · 1 2 –	0%		
Test for overall effect:	7 = 2.97 (P = 0	23, 01- 1003)	2 (1 - 0.1	00),1 -	0.0		
	2 2.01 () 0	,					
1.3.2 Pamidronate							
Berenson 1998	31	198	49	179	18.4%	0.57 [0.38, 0.85]	
Kraj 2000	15	23	16	23	18.3%	0.94 [0.63, 1.40]	-+
Terpos 2000	0	32	3	30	0.4%	0.13 [0.01, 2.49]	
Subtotal (95% CI)		253		232	37.0%	0.69 [0.40, 1.20]	-
Total events	46		68				
Heterogeneity: Tau ² =	0.12; Chi ² = 5.	00, df =	2 (P = 0.	08); I ^z =	60%		
Test for overall effect:	Z = 1.31 (P = 0	.19)					
1.3.3 Ibandronate							
Menssen 2002	21	99	20	99	10.4%	1.05 [0.61, 1.81]	—
Subtotal (95% CI)		99		99	10.4%	1.05 [0.61, 1.81]	•
Total events	21		20				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.18 (P = 0	.86)					
T-t-L/05% CD		676			400.00	0.7410.00.0.001	
Total (95% CI)		5/5	4.00	541	100.0%	0.14 [0.62, 0.89]	▼
l otal events	141	10.16	100	201.17	7.01		
Heterogeneity: I auf =	0.00; Chi* = 6. 7 = 0.07 (P = 0	42, df =	ы(Р = 0.)	38); 1* =	1%	41	0.01 0.1 1 10 100
Test for overall effect.	Z = 3.27 (P = 0	.001)				Favo	ours Bisphosphonates Favours control

Key statistical principles of metaanalysis: two stage process

Remeber: the <u>unit of analysis</u> of a systematic review is an <u>individiual study</u>.

- Patients in one trial are <u>not</u> directly compared with those in another trial
- Each trial is analysed separately
- Summary statistics are calculated for each trial
- These summary statistics are added together in the meta-analysis

Courtesy: Dr. Djulbegovic

Rationale for meta analysis is <u>clinical not</u> <u>statistical</u>

- <u>Similar interventions</u> for <u>similar conditions</u> will produce the <u>similar effects</u> (i.e. in the same direction) in different clinical trials
- While the effect size may not be the same, it will rarely be in the opposite directions
- However, since these are similar studies...there is potential for variation among efficacy estimates. (heterogeneity)
- If there is clinical or statistically significant <u>heterogeneity</u> a meta-analysis may not be valid

UNIVERSITY OF SOUTH FLORIDA

			Bisphosphonates	Control		Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 Etidronate Belch 1991 Daragon 1993 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	0.46078431 0.07099303 0.06; Chi ² = 3.76, df Z = 1.15 (P = 0.25)	0.19802951 0.0344094 = 1 (P = 0.05)	92 39 131 ; i² = 73%	74 39 113	9.8% 21.8% <mark>31.6%</mark>	1.59 [1.08, 2.34] 1.07 [1.00, 1.15] 1.24 [0.86, 1.80]	•
1.1.2 Clodronate Delmas 1982 Lahtinen 1992 McCloskey 2001 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect:	1.288 -0.28721312 -0.01561644 0.04; Chi ² = 4.06, dt Z = 0.45 (P = 0.65)	0.89442719 0.18107149 0.0955637 ⁷ = 2 (P = 0.13)	7 168 264 439 ; I ^z = 51%	6 168 272 446	0.8% 10.8% 17.4% 29.0%	3.63 [0.63, 20.93] 0.75 [0.53, 1.07] 0.98 [0.82, 1.19] 0.93 [0.66, 1.29]	
1.1.3 Pamidronate Berenson 1998a Brincker 1998 Kraj 2000a Musto 2003 Terpos 2000 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	-0.29 -0.10714286 0.1168 -0.02 -2.08 0.00; Chi ² = 3.41, df Z = 1.38 (P = 0.17)	0.16666667 0.94491118 0.4 0.203 1.41421356 ⁷ = 4 (P = 0.49)	203 152 23 40 32 450 ; ² = 0%	189 148 23 41 30 431	11.8% 0.7% 3.6% 9.5% 0.3% 25.9%	0.75 [0.54, 1.04] 0.90 [0.14, 5.73] 1.12 [0.51, 2.46] 0.98 [0.66, 1.46] 0.12 [0.01, 2.00] 0.85 [0.67, 1.07]	
1.1.4 Ibandronate Menssen 2002 Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect:	0.06341463 plicable Z = 0.29 (P = 0.77)	0.22086305	99 99	99 99	8.6% 8.6%	1.07 [0.69, 1.64] 1.07 [0.69, 1.64]	•
1.1.5 Zoledronate Aviles 2007 Subtotal (95% CI) Heterogeneity: Not ap Test for overall effect:	-0.858888889 plicable Z = 2.58 (P = 0.010)	0.33333333	46 46	48 48	4.8% <mark>4.8</mark> %	0.42 [0.22, 0.81] 0.42 [0.22, 0.81]	
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	0.03; Chi² = 24.48, (Z = 0.46 (P = 0.64) erences: Chi² = 8.86	df = 11 (P = 0.0	1165 01); I² = 55% 06) I² = 54.8%	1137	100.0%	0.96 [0.82, 1.13] Fave	0.005 0.1 1 10 200 ours Bisphosphonates Favours control

Heterogeneity

- Heterogeneity = The variability among studies in a systematic review
- May reflect clinical or methodological diversity or both
- How to identify heterogeneity:
 - Graphical: Do the 95%CI overlap poorly?
 - Quantification of inconsistency:
 - I² (percentage of variability in effect estimates due to heterogeneity/inconsitency rather than to chance)
 - Values > 50% may be considered to indicate substantial heterogeneity

Courtesy: Dr. Djulbegovic UNIVERSITY OF SOUTH FLORIDA

Sensitivity analysis

UNIVERSITY OF SOUTH FLORIDA

UNIVERSITY OF SOUTH FLORIDA

Network meta analysis

HEALTH

BASED MEDICINE

Indirect comparisons

Where to look for SR/MA?

- PubMed
- <u>Clinical queries</u>
 <u>http://www.ncbi.nlm.nih.</u>
 <u>gov/pubmed/clinical</u>
- <u>Cochrane</u>
 <u>Collaboration</u>

Questions

The latest research shows that we should do something with all this research !

51

BASED MEDICINE

UNIVERSITY OF SOUTH FLORIDA

Thank you.

For additional questions: please send an email or call:

rmhaskar@health.usf.edu

Phone: (813) 974 9608

