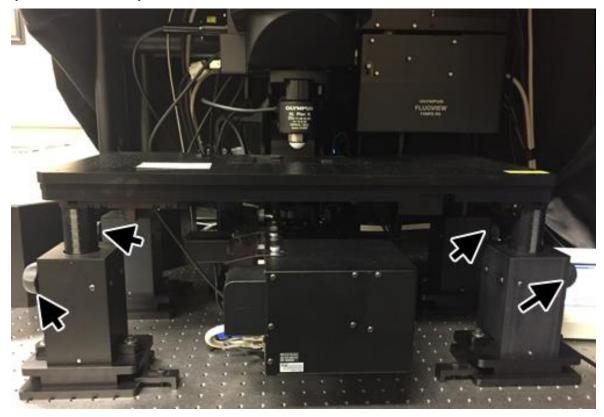
Olympus FV MPE-RS Multiphoton Laser Scanning Microscopy

Turning on system.

- 1. Turn on the computer first (1). Log into Windows desktop.
- 2. Turn on the Xenon arc lamp by pressing **ON/OFF button (3)** 2 seconds and releasing (U-HGLGPS).
- 3. Turn on the control box CBH (4)
- 4. Turn on the **XY stage power supply (5)** on the back side.
- 5. Turn on FV30-PSU power supply unit (6).
- 6. Turn on the Main scanner(7).
- 7. Turn on the SIM scanner with switch (8) and key (9).
- Turn on the remote
 Microscope control panel
 (2) (switch on the backside).
- (Optional) if you are planning to do photomanipulation such as bleaching or activation, turn on the Coherent visible laser sources (10, 11, 12).

5



Microscope setting.

1. Before you start imaging, check if the objective on the system is the one you want to use. If you need a different objective, contact Jake for installation.

2. Depending on the objective and your sample size, you may need to adjust the height of the stage in

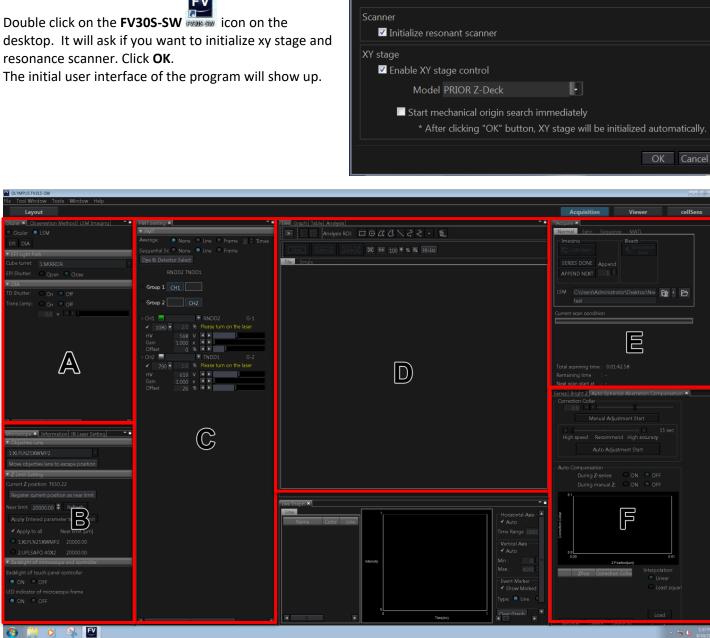
order to have enough space between them. Touch the **upper arrow head** on the microscope control panel to raise the objective.

- 3. If you can place your sample without touch the objective, then the current setting will be good to go.
- 4. Use the joystick to move the stage.
- 5. If you can't fit your sample in or the objective is too far away from the sample, loosen the **four knobs on the stage** (arrows) and gently push down or pull up the entire stage. **Make sure the stage is on level with T-level.**
- 6. Tighten the **stage knobs**.

DIC

86

>


ESCAPI

Confocal Scanning Setting

desktop. It will ask if you want to initialize xy stage and resonance scanner. Click OK.

The initial user interface of the program will show up.

You will use the area **A~F** most during typical image acquisition.

- (A) Control the viewing mode (eye or scanning), select filter cubes for viewing.
- (B) Control the setting of microscope objectives, z movement, and IR laser line and alignment.
- (C) Set up the scanning mode, such as sequential, scan averaging, and laser power and detector sensitivities.
- (D) Control live image scanning, ROI setting, and other tools.
- (E) Set up the image acquisition.
- (F) Set up z and time series, Bright Z, and spherical aberration compensation.

X

Basic Image Acquisition

Place your sample on the stage and place immersion medium if needed.

Click Ocular tab for direct observation through microscope eyepieces.

Click **Epi** button for fluorescence observation. Select a filter from the drop down list of **Cube Turret** .

Click Open on EPI Shutter to illuminate your sample with fluorescence light.

Focus onto the sample by moving objective fast up or down with **arrowheads**, and fine control with **focus handle**.

if needed.	Ocular × Observation Method LSM Imaging		
	Ocular	LSM	
epieces.	EPI DIA		
	▼ EPI Light Path		
om the drop	Cube turret:	2:GFP	
	EPI Shutter:	Open Oclose	
	▼ DIA		
rescence light.	TD Shutter:	On Off	
	Trans Lamp:	On Off	
vith arrowheads ,		6.8 V • •	
· · · · · · · · · · · · · · · · · · ·			
	÷		

Once you find a region to image, click **LSM** on the **Ocular** tab to change the lightpath to the laser scanning mode.

Before acquiring images, there are a few steps in configuration to set up how to acquire your images, such as types of IR lasers, number of detectors, scanning type (Galvano vs Resonant) etc.

Scan Settings

Select either Galvan or Resonant scanner (Galvano scanner scans slowly to generate better quality images, whereas Resonant scanner scans extremely fast but sacrifice image quality. At 512x512 resolution, the fastest of Galvano scanner is 2.0 us/pixel, whereas the resonant scanner scans at a fixed rate of 0.067us/pixel).

With Galvano scanner, you can choose the scan speed by sliding the bar. Galvano with OneWay scanner is recommended for routine high-resolution image acquisition.

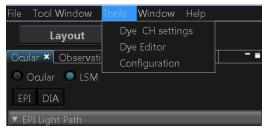
Scan (image) size is 512x512 as default, and you can change it from the drop down list.

Select High voltage correction ON.

Area Settings

Here, you can **rotate** sample display without actual rotation of the sample. You can **zoom** in to get better resolution (keep it under 5x, beyond it may not increase resolution.)

Ocular Observation Method LSM Imaging ×			
▼ Scan Settings	•		
$\Diamond \circ \alpha \circ \land c + \Box$			
Scanner:			
Type: 🔍 Galvano 🔍 Resonant			
Mode: 💿 OneWay			
Speed: 2.0 us/pixel			
Image Size:			
Aspect Ratio: 🔍 1:1 🛛 🔍 4:3			
Scan Size: 512x512 🔻 🛹			
High voltage correction: ON OFF			
Pixel: 2.0 usec Line: 2.114 msec Frame: 1.084 sec			
▼ Area Settings			
<i>6 4</i>			
Rotatior 0.0 🗣 deg Reset			
Pan X: 0.00 🖨 um Reset			
Pan Y: 0.00 ♦ um Reset			
Zoom 1.00			
x1 @			
▼ Round trip correction	▼		


Laser beam path setting

To check the current setting of dichroic mirrors and emission filters, use menu command, *Tool Window/Lightpath*. The Lightpath tab will be added to D area. Click the tab and check laser coupling mirror (yellow box) if the correct one is selected. If not, select one from the Coupling mirror of IR laser tab.

- Glass for use of Main laser only.
- LCDM690-870 for two lasers with Main (>920 nm) and 2nd (<870 nm)
- LCDM1030-1300 for two lasers with Main (<940nm) and 2nd (>1030nm)
- LCDM690-1050 for two lasers with Main (>1120nm) and 2nd (<1050nm)

PMT Setting

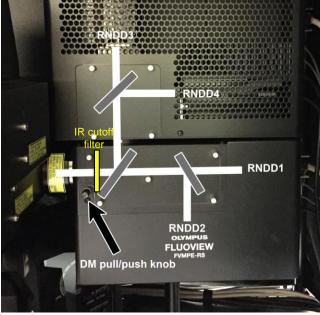
On the PMT Setting panel, there will be a message "Please turn on the laser", which means the IR laser emission is not activated.

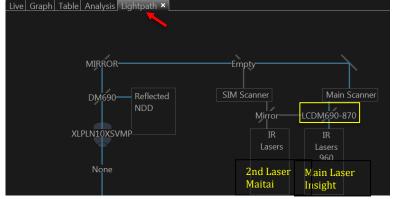
Configuration			×
Preference Filte	rs Microscope		
File/folder Laser	IR laser emission control		
XY Stage	Laser IR laser-1 INSIGHT X3-OL	Emission status On Off	
Software IR laser emission	IR laser-2 MaiTai e HP DS-OL	On Off	
Microscope Link Keyboard	✓ Shut down the software with	IR laser emission ON.	
			OK Cancel

Open **Configuration** window from Tool/Configuration menu.

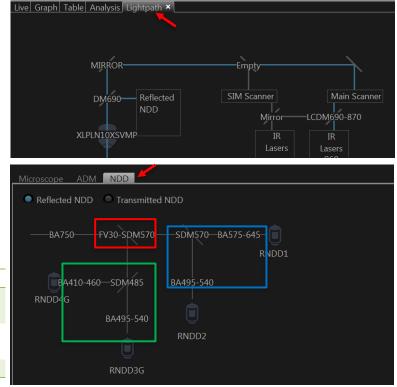
Select **IR laser emission** tab and click **On** for IR laser that you will use. Click **OK**.

A few moments later, the message will change into "the Laser is ON" and you can change the power level.


Now decide which detector (CH1~CH4) will be used for your experiment.


This system has 4 detectors for fluorescence; 2 conventional PMTs (RNDD1 and RNDD2) and 2 high sensitive GaAsP detectors (RNDD3 and RNDD4).

You can use only **2 PMTs** or **all 4 detectors** by DM knob on the microscope (arrow).


With the knob is pushed in, you will use **RNDD1** and **RNDD2**.

With the knob is pulled **out**, you will use all 4 detectors, if **FV30-SDM570** dichroic mirror is installed (see below)

To check the current setting of dichroic mirrors and emission filters, use menu command, *Tool Window/Lightpath*. The Lightpath tab will be added to **D** area.

Select Lightpath tab and NDD tab (red arrows). Click Reflected NDD.

If the red box (SDM) shows **FV30-SDM570**, the current setting allows two or four detector configuration.

SDM	
FV30-SDM570	>570 nm to RNDD1/2 and
	<570 nm to RNDD3/4
FV30-SDM-M	Mirror all emission to
	RNDD 3/4
Empty	All emission to RNDD1/2

It also shows the current fluorescence NDD filter cubes for the detectors (green and blue boxes)

Filter cube	Colors	Emission filter 1	DM	Emission filter 2
FV30-FVG	Violet & Green	BA410-460	DM485	BA495-540
FV30-FCY	Cyan & Yellow	BA460-500	DM505	BA520-560
FV30-FGR	Green & Red	BA495-540	DM570	BA575-645
FV30-FOCY5	Orange & Far red	BA575-645	DM650	BA660-750
FV30-F475R	475 nm & Red	SHG465-485	DM570	BA600-670
The filter cubes r	and to be changed den	onding on user's experi	mont Plaaca cont	act the core staff for filter cha

The filter cubes need to be changed depending on user's experiment. Please contact the core staff for filter changes.

PMT Setting: Setting Image Acquisition condition.

For better quality image, it is often useful to use **Average** in either **Line or Frame** mode. Put a number to the **Times**, and the system will scan the same line or frame as many as you specify and display the image with average intensity on the screen.

It is often necessary to acquire different fluorescence signal sequentially to minimize bleed through between different color channels.

Click **Line or Frame** button on the **Sequential Scan** (red arrows). Then the RNDD1 and RNDD2 will be grouped as Group 1 and Group2.

Check the CH1 and CH2 boxes (blue arrows) to activate the detectors and Laser sources (yellow arrows) if they are not checked.

PMT Setting ×	PMT Setting ×
▼ PMT	▼ PMT
Average: None Line Frame Times 	Average: None Line Frame Times
Sequential Sc 🔍 None 🔍 Line 🍚 Frame	Sequential Sc 🔘 None 🔍 Line 🔘 Frame
Dye & Detector Select	Dye & Detector Select
RNDD1 RNDD2	RNDD1 RNDD2
Group 1 CH1 CH2	🖌 Group 1 CH1
CH1 📕 🔽 RNDD1 G-1	Group 2 CH2
\checkmark 960 \checkmark 5.0 % Please turn on the laser	
HV 467 V 🔺 🕨	CH1 Alexa Fluor 5 ▼ RNDD1 G-1
Gain 1.000 x ◀ ►	960 5.0 % Please turn on the laser
Offset <u>3 %</u> ◀ ► G-1	HV <u>467</u> V ▲ ► Gain 1.000 x ▲ ►
	✓ Offset 3 % ◀ ►
	CH2 Alexa Fluor 4 RNDD2 G-2
HV 645 V • • • • • • • • • • • • • • • • • •	960 5.0 % Please turn on the laser
Gain <u>1.000</u> x ◀ ▶ Offset <u>10</u> % ◀ ▶	HV 645 V ◀ ►
	Gain 1.000 x ◀ ►
	Offset 10 %
Now you are ready to scan. Click Live button	
on Live Tab. It will change into Stop button to click	< to stop scanning.

Hi-Lo button while scanning. It will change the image in gray To set dynamic intensity range for imaging, click **Hi-Lo** scale with some red and blue pixels. The red pixels represent the pixels with maximum intensity (saturate d) and the blue pixels ones with zero intensity. The proper image will have a few red pixels and blue background.

This condition can be achieved by adjusting laser power (in %) and the HV and Offset of each detector (green boxes) The higher laser power and HV are, the brighter the signal intensity.

Increasing Offset will suppress (reduce) background.

Try to minimize the laser power and maximize the detector's HV without generating electronic noise (keep HV <800).

Stop Live Scanning by click button.

Go to Acquire tab in area E and select Normal tab.

Click **File folder** icon (arrow) and under the Data (D:)/Olympus, select a folder (create one for you if you have not created one) to save images.

The acquired images are saved automatically to the folder you specified.

Click LSM Start

to start image acquisition.

Acquiring Z-series

Select Z: ON at the Series tab.

There are two ways to define the upper and lower limits of a z-series; (1) Start/End or (2) Range.

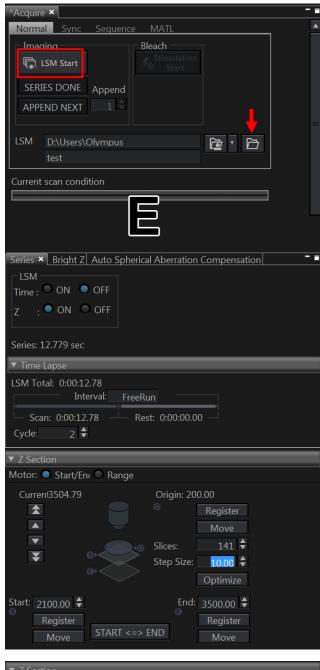
(1) Click **Start/End** button in **Z Section** Window.

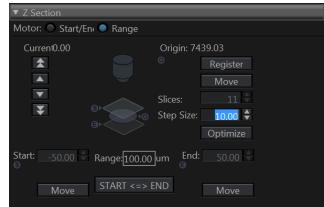
Move the focus one side (either lower or upper part) of your sample.

Click **Register** this focus for **Start** (or **End**).

Move the focus the other side of the sample.

Click Register this one for End (or Start).

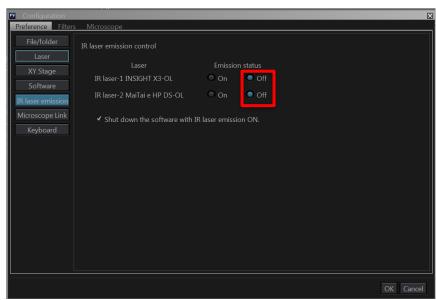

Choose the **Step Size**, the number of **Slices** will be changed according to the total thickness of the z dimension.


(2) For using **Range**, click **Range** button in **Z Section** Window. Move the focus to the middle of the your sample in z dimension. Type the number for the micrometer range (for example 100 um, which means it will capture 50 um range up from the current position and 50 um range down from the current position) and step size.

Once the z series range is set up, click **LSM Start** button. Once the image acquisition is done, the SERIES DONE and **APPEND NEXT** button will flash. Click SERIES DONE to finish or

append more sections if necessary by adding number and clicking **APPEND NEXT**.

Norm	al Sync Sequence	MATL	
Ima C	ging LSM Start	Bleach Stimulation	
	IES DONE / ppend		
LSM	D:\Users\Olympus test		



System Turn off

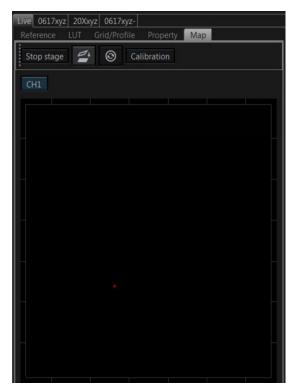
If you will be the last person to use the scope for the day, please turn off the system.

- Before exit the FV30S-SW imaging program, go to menu command Tool/Configuration. Click IR laser emission in the Preference tab. Click Off on both IR lasers and click OK.
- 2. Exit the FV30S-SW program.
- 3. Shut down the window program.
- 4. Turn the key off (1) and then switch(2) of the SIM scanner.
- 5. Turn off the main scanners (3 and 4).
- 6. Touch OFF button (5) on the touch panel and exit. Power off with the switch on the back (6).
- 7. Turn off the CBH unit (7).
- Turn off the fluorescence arc lamp by pressing the ON/OFF button (8) for 2~3 seconds and releasing it.
- 9. Turn off the xy stage controller power supply (9)
- 10. If you used the bleaching visible lasers, turn off them (10)

Multi Area Imaging with Map Image

- Click button in **Live** tab to expand the sub pane.
- Select Map tab.
- Focus onto a ROI and adjust the acquisition parameters.
 Click button to register the position and the acquisition parameters.
- Repeat for additional ROIs.
- Scroll to the right in the registered ROIs list and check "OverlayMap".
- Select Acquire Tool window and select MATL tab.

- Press the file folder icon and select (or make) a folder to save the images.
- Press Start button to captures the images of the registered ROIs.
- After image acquisition is finished, the images will appear on the **Map** area.

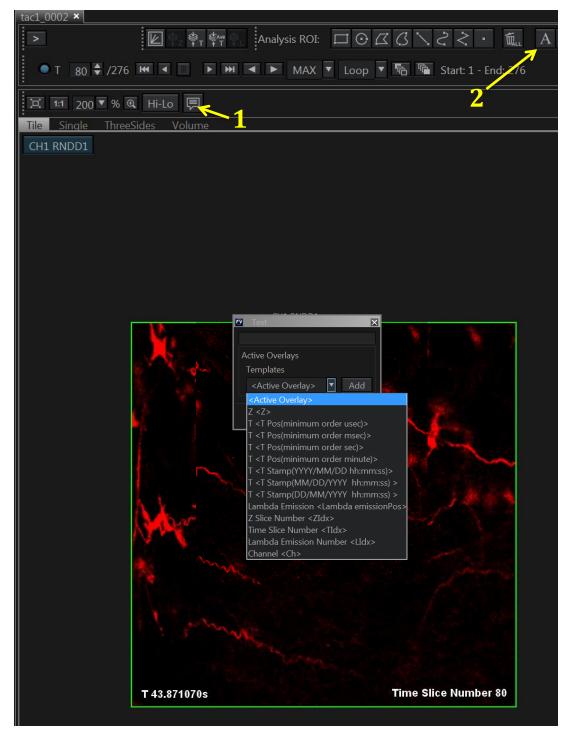

Live 0617xyz 20Xxyz	
> Analysis ROI:	$\langle \langle \rangle$
Live [Livex2] [Livex4]	其 1:1 2
Live 0617xyz 20X6yz 0617xyz- Reference LUT Grid/Profile Property Map Stop stage S Calibration CH1	Analysis ROT Analysis ROT Tile Single CH1 Alexa Fluor.
Stage position X: 1735[um] Y: -643[um] ¥ Area Registration	
Method LSM Imaging Stimulation Synchrostation Register Registered Area List	
Display order on map Protocol Map Clear Reset software origin Save As Enable X pos Y pos Num of area Method Time	
Registered Area List Registered Area List Display order on map Prohocol Display order on gin Save As Display concording Save As Display concording Save As Display concording	Clear S OverlayMap Comme

Acquiring the stitched image with MAP Imaging

- Click **Map** icon or button and select **Map** tab to define the multiple ROIs or tilting area.
- Move the stage to a region of your sample and press "register" button to register the position. (Note: all image acquisition conditions such as xy position, focus, laser intensity, PMT setting etc are registered when you press register button.

So, register after you finish adjusting all conditions.

- Move to the other side of your sample and register.
- Use the 📖 or 🔯 or 🖾 button to create tiles for imaging areas.
- If you change the acquisition parameters after registration, you must update by pressing update
 Button.
- Select MATL tab in the Acquire Tool Window and Press Start button to acquire images.



• If your sample is not flat, use **Focus Map**. Click **Focus Map** button, it will define 3 tiles. You can move the tile according to the slope of your sample. Go to the one defined focus point, adjust the top or bottom of your

sample as reference point for z-series and click button. Repeat for the other two points. The program will calculate the offset along the focus point.

Annotating the images

- To display annotation of main feature (e.g. time stamp for time lapse image series), click the Active Screen Overlay button (arrow 1).
- If you want to display specific annotation (e.g., time slice number), click the Create a Text Annotation for Analysis button (arrow 2) and then click on the image.
- A popup window will show up with a list of annotation. Select the annotation from the dropdown list and click Add and OK.
- You can change the format of the annotation by selecting it and right-click for context menu.

