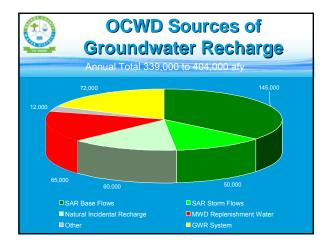
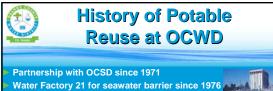
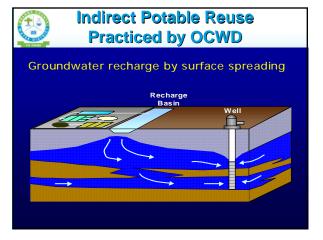

The GWR System – Indirect Potable Reuse as a New Water Source

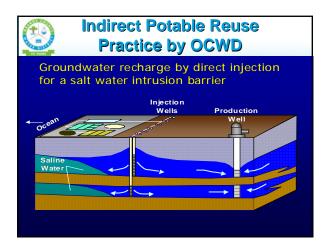

Mehul Patel, P.E. GWRS Process Manager Orange County Water District

Presented To University of South Florida February 15, 2010



Lime clarification, sand filtration, GAC (BAC), Chlorine disinfection First RO treatment of recycled water in 1977

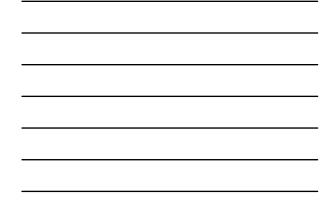



Blend of RO/GAC/Deep well water 15 MGD 1980-2000

UV added for NDMA destruction in 2001 Research into RO and pretreatment 1977-2000 Planning for Groundwater Replenishment (GWR System) 1995-2002

Interim Water Factory 5 MGD (6.9 million m³/yr)

MF/RO/UV 2004-2006





Joint Partnership								
OCSD:	Wastewater Collection and Disposal	, Source Control, Treatment						
OCWD: Manages and protects the Orange County Groundwater Basin								
P	Partnership since 1972 for Wastewater Reclamation							
Source Control	OCSD	OCWD						
Sewage		atment Advanced Water Purification Reuse						

Reverse Osmosis System

70 MGD Reverse Osmosis System Hydranautics ESPA-2 Membranes Fifteen 3-stage array units (78:48:24) each sized at 5 mgd Pacouver Pate: 95%

Recovery Rate: 85% Flux of 12 gfd Removes dissolved minerals, viruses, and organic compounds (incl. pharmaceuticals) Pressure range: 180 - 230 psi
15,750 membrane elements Two CIP systems

Ultraviolet/Advanced Oxidation System P10.

70 MGD Trojan UVPhox System

Low Pressure – High Output lamp system

Destroys trace organics Uses Hydrogen Peroxide to form an Advanced Oxidation Process

UV system given a 4-log virus removal credit to meet CA DPH Title 22 criteria for recycled water

Where Does GWR System Water Go?

Water is returned to groundwater basin Half (35 MGD) is sent to seawater intrusion barrier Half (35 MGD) is sent to recharge basins in Anaheim

Regulatory Oversight alifornia Dept. of Public Health (CDPH) establishes excelling criteria Treatment and quality TOC limit Tock limit Travel time Blending Regional Water Quality Control Board issues reclamation permit Regional Board incorporates CDPH recommendati Into permit Regional Board incorporates CDPH recommendations into permit CDPH public hearing - Feb 2003 Regional Board permit - Feb 2004 Incorporate CDPH recommendations 100% RO, AOP Meet drinking water standards Monitor for unregulated contaminants Blend with storm water and imported water 75% recycled water blend for injected water can increase to 100% once demonstrate receiving and the deciver of the constrate receiving and the deciver of the deciver of the constrate receiving and the deciver of the constrate receiving and the deciver of 2-1-4

Multiple Barriers Protect Public Health

- Microbial contaminants
 - MF removes bacteria and protozoa RO removes viruses, bacteria
 - UV inactivates microbes, prevents replication
 - Retention time in groundwater
- Chemical contaminants –

- Source control prevents introduction of contaminants
- MF removes particles, suspended solids
- RO removes dissolved salts, metals, organics, including pharmaceuticals, endocrine disruptors
- UV with hydrogen peroxide destroys small organics
- Groundwater provides buffering, biodegradation, ion exchange

Process Control Points

Key points in treatment process monitored for failure by on line instrumentation Online sensors can detect treatment lapses Examples include:

- Turbidity through MF Pressure decay test with MF Conductivity through RO TOC through RO UVT into UV AOP UV power delivered
- pH through decarbonation pH through lime addition

Source Control

Orange County Sanitation District "enhanced source control"

- Regulate discharges into sewer to prevent contamination
- First step in producing drinking water, first barrier
- OCWD helps identify compounds of concern and efficacy of
- advanced treatment

 Divert non-reclaimable wastes to
- different plant

Appointed By National Water Research Institute in 2004 as a requirement of the GWRS plant operating permit Leading Experts in Hydrogeology, Chemistry, Toxicology, Microbiology,

- Engineering, Public Health, Public Communications and Environmental Protection
- Review Operations, Monitoring and Water Quality
- Panel Makes Recommendations to OCWD and Regulatory Agencies to Assure Quality and Reliability

Water Quality Produced by GWRS

- Meets all drinking water standards
- Influent TDS 1000 mg/L, RO product <30 mg/L</p>
- Influent TOC 11-12 mg/L, product water <0.15 mg/L</p>
- Pharmaceuticals removed to non detect (ng/L RDLs)
 Other CECs also effectively removed by RO
- NDMA destroyed by UV
- 1,4-dioxane source control and removed by RO, AOP
- ND to trace THMs

1 4

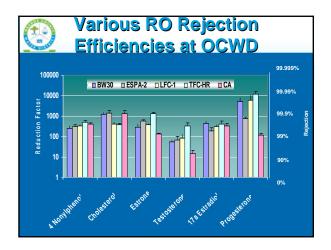
Best water available for aquifer replenishment

GWRS Water Quality							
Parameter	Sample Location	Method	Permit Requirement	Reportable Detection	Actual Values		
	RO Permeate	5910B	>90%		98.80%		
Turbidity	RO Permeate	Automated Plant Monitoring			0.18 NTU		
Total Recycled Water Flow	Final Product	Plant Monitoring	<70 mgd	N/A	N/A		
Total Nitrogen	Final Product	4500NO3F	5 mg/L	0.4 mg/L	1.7 mg/L		
Total Organic Carbon	Final Product	5310C	0.5 mg/L	0.01 mg/L	0.19 mg/L		
Total Coliform	Final Product	9221B	2.2 MPN /100 ml	2 MPN /100 ml	ND		
	Final Product	Automated Plant Monitoring	6 - 9		8.22		
Electrical Conductivity	Final Product	2510B	N/A	1 um/cm	80.96 um/cm		

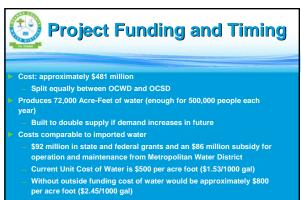
Hormones	Result (ng/L)	Detection Limit (ng/L)
Diethylstilbestrol	ND	10
Progesterone	ND	10
7a-Ethynylestradiol	ND	10
7b-Estradiol	ND	10
17a-Estradiol	ND	10
Estriol	ND	10
estosterone	ND	10
pitestosterone	ND	10
Estrone	ND	10

Eeed Water to GWRS							
Pharmaceuticals	Result (ng/L)	Detection Limit (ng/L)					
Triclosan	510	1					
Ibuprofen	1000	5					
Gemfibrizol	4300	1					
Sulfamexthoxazole	2100	1					
Primidone	140	1					
DEET	77.7	1					
Ciprofloxacin	820	100					
Carbamazepine	260	t					
Azithromycin	1200	5					
Acetominophen	35.9	10					
Caffeine	460	3					

Pharmaceutical Results for Final Product Water							
Parameter	Sample Location	Method	Permit Requirement	Reportable Detection	Actual Values		
Pharmaceuticals and Other Substances							
Acetaminopen	Final Product	Pharma	N/A	10-20 ng/L	ND		
Azithromycin	Final Product	Pharma	N/A	1 ng/L	ND		
Caffeine	Final Product	Pharma	N/A	3 ug/L	ND		
Carbamazepine	Final Product	Pharma	N/A	1 ng/L	ND		
Ciprofloxacin	Final Product	Pharma	N/A	10-150 ng/L	ND		
Ethylenediamine Tetra-Acetic Acid (EDTA)	Final Product	No developed Method	N/A	N/A	N/A		
Gemfibrozil	Final Product	Pharma	N/A	1 ng/L	ND		
Ibuprofen	Final Product	Pharma	N/A	1 ng/L	ND		
lodinated Contrast Media	Final Product	No developed Method	N/A	N/A	N/A		
Lipitor	Final Product	No developed Method	N/A	N/A	N/A		
Methadone	Final Product	No developed Method	N/A	N/A	N/A		
Morphine	Final Product	No developed Method	N/A	N/A	N/A		
Salicylic Acid	Final Product	No developed Method	N/A	N/A	N/A		
Triclosan	Final Product	Pharma	N/A	1-5 ng/L	ND		



	C Res				
Parameter	Sample Location	Method	Permit Requirement	Reportable Detection	Actual Values
Endorcrine Disrupting Chemicals and	Pharmaceuticals				
Hormones					
17a-Ethynyl Estradiol ²⁷	Final Product	Hormones	N/A	10 ng/L	ND
17-b Estradiol	Final Product	Hormones	N/A	10 ng/L	ND
Estrone	Final Product	Hormones	N/A	10 ng/L	ND
"Industrial" Endocrine Disruptors					
Bisphenol A	Final Product	Phenols	N/A	1 ug/L	ND
Nonylphenol	Final Product	Phenols	N/A	1 ug/L	ND
Nonylphenol Polyethoxylate ²⁸	Final Product	Phenols	N/A	10-30 ug/L	ND
Octylphenol ²⁹	Final Product	Phenols	N/A	2 ug/L	ND
Octylphenol Polyethoxylate	Final Product	No developed method	N/A	N/A	N/A
Polybrominated Diphenyl Ethers	Final Product	525	N/A	0.1 ug/L	ND



in Final Product Water						
Parameter	Sample Location	Method	Permit Requirement	Reportable Detection	Actual Values	
	UNRE	GULATED CHEMIC	CALS			
Boron	Final Product	200.7	1 mg/L'	0.1 mg/L	0.25 mg/L	
Hexavalent Chromium (dissolved)	Final Product	218.6	N/A	0.2-1 ug/L	ND	
Vanadium	Final Product	200.7	50 ug/L*	0.5 ug/L	ND	
Dichlorodifluoromethane	Final Product	524.2	1 mg/L	0.5 ug/L	ND	
Ethyl tert-butyl ether	Final Product	524.2	N/A	1 ug/L	ND	
Tertiary-amyl methyl ether	Final Product	524.2	N/A	1 ug/L	ND	
Tert-butyl alcohol	Final Product	524.2	12 ug/L'	2 ug/L	ND	
1,2,3-Trichloropropane	Final Product	TCP-LOW	0.005 ug/L'	0.005 ug/L	ND	
n-Nitrosodimethylamine (NDMA)	Final Product	Isotopic Dilution – GC/MS/MS-CI	10 ng/L'	2 ng/L	ND	
1,4-Dioxane	Final Product	Purge andTrap GC/MS	3 ug/L"	1 ug/L	ND	

Operational since January 2008

GWR System Actual Unit Water Costs (2009)									
		August	September	October	November	December			
Electricity	July \$146	\$127	\$131	\$99	\$118	\$106			
Chemicals	\$62	\$74	\$64	\$68	\$63	\$69			
Labor	\$115	\$107	\$112	\$107	\$156	\$125			
Plant Maintenance	\$52	\$39	\$71	\$58	\$72	\$72			
R&R Fund Contribution (\$4.5 Million Annually)	\$67	\$63	\$65	\$64	\$95	\$70			
Debt Service (\$11.5 Million Annually)	\$170	\$162	\$611	\$165	\$242	\$180			
Subtotal	\$612	\$573	\$656	\$562	\$746	\$622			
MWD LRP Subsidy (1)	-\$14	-\$121	-\$121	-\$121	-\$121	-\$121			
OCSD contribution to maintenance cost (2)	-\$7	-\$7	-\$7	-\$7	-\$11	-\$8			
Total (\$/AF)	\$591	\$445	\$483	\$434	\$614	\$493			
Production (AF)	5633	5910	5751	5820	3963	5334			
 (1) MWD LRP Subsidy of \$121/at (2) Currently estimated at \$500,0 			t 5,000 af	of wate	er produc	ed.			

How Does the Water Cost Compare?

Comparable to alternative sources

- One Acre Foot (AF) = water for two families/yr
- Typical OC retail water rate >\$900/AF in 2009
- GWR \$560/AF (\$1.72/1000 gal) with grants and subsidies \$121/AF operating subsidy from MWD (regional water importer)
- GWR \$850/AF (\$2.60/1000 gal) without grants/subsidies Raw MWD water for recharge:
- \$536/AF increasing to \$637 (\$1.95/1000 gal) by Jan 2011 Treated MWD water for direct use: \$753/AF increasing to \$899 (\$2.75/1000 gal) by Jan 2011

Even Indirect Projects Have Failed to Gain Public Support

- San Diego "toilet to tap" rejected twice Los Angeles – DWP East Valley project
- Upper San Gabriel
- Dublin/San Ramon
- Queensland, Australia

What Have We Learned from Potable Reuse in OC?

Public can accept potable reuse if:

- Need is clear
- Safety is assured multiple barriers
 Quality is better than alternatives
 Public health agencies have
- continuing oversight
- Independent scientific review
 Outreach is effective and ongoing
- Politicians and community leaders make commitment
 The more provide understand the
- The more people understand the more they accept the idea

100% support from businesses and major environmental groups

Support from several health experts, medical doctors hospitals, pharmacists and scientists

Educational, religious, police, fire leaders,

minority leaders and more than 200 community

elected officials

PUBLIC OUTREACH PROCESS FOR GWRS

Meetings with All Elected Officials... Local, State and National

- Presentations to Community Groups, Organizations, Clubs, etc... Over 1,500 to Date
- Tours of the Advanced Water Purification Plant
- Tours of the Recharge Facilities
 Press Releases, Editorial Board Briefings, Briefings for Each New Reporter

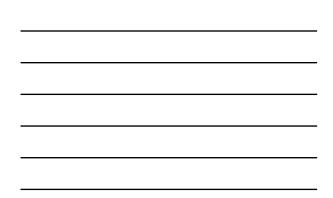
Cable/Local TV Appearances

Widespread Unplanned T **Potable Reuse**

Most major water supplies have wastewater component OC depends on Colorado River, State
 Water Project, Santa Ana River (wastewater dominated)

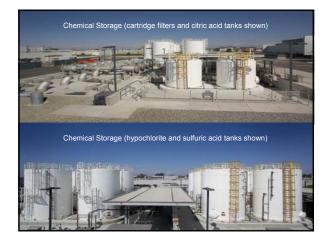
- Wastewater dominated)
 Philadelphia Schuylkill River
 Cincinnati Ohio River
 Washington D.C. Occoquan River
 Worldwide rivers receive wastewater and provide drinking water

-

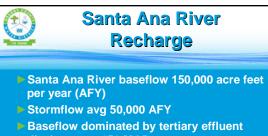

.

EARLY INDIRECT POTABLE REUSE PROJECTS								
Project	<u>Start</u>	Size (MGD)	<u>Treatment</u>	<u>Use</u>				
Whittier Narrows, CA	1963	40	Tertiary	Percolation				
South Lake Tahoe, CA	1966	6.5	Tertiary, GAC	Injection				
Windhoek, Africa	1969	4.5	Advanced without membranes	DPR				
Water Factory 21, OCWD	1976	5	RO,UV	Injection				
Upper Occoquan, VA	1981	24	Tertiary, GAC	Reservoir				
El Paso, TX	1986	6.5	Tertiary, GAC	Injection				
West Basin, LA	1996	5	MF, RO	Injection				
Scottsdale, AZ	2002	9	MF, RO	Injection				

WATER									
	FIC/		PROJEC	TS					
Project	<u>Start</u>	Size (MLD)	Treatment	<u>Use</u>					
GWR System, OCWD	2008	70	MF, RO, UV	Percolation/ Injection					
Singapore NEWater	2003	9	MF, RO, UV	Reservoir					
West Basin Expansion, LA	2006	6.5	MF, RO, UV	Injection					
LA Harbor Project	2006	6.5	MF, RO	Injection					
Alamitos Gap, LA	2005	3	MF, RO, UV	Injection					
Western Corridor Recycled Water Project (Bundamba, Luggage Point, Gibson Island, Queensland)	2007	Up to 60	MF, RO, UV	Reservoir					







discharges > 150 MGD Santa Ana River Water Quality and Health (SARWQH) Study 1994-2004

🕑 Imported Water Recharge

 Colorado River water and State Water Project water (from Sacramento/San Joaquin Delta)
 OCWD average 65,000 AFY

- (80 million m³/yr) imported water recharge mostly Colorado River water Imported water sources all
- Imported water sources all receive effluent discharges from upstream cities
- Replenishment water less available than past

