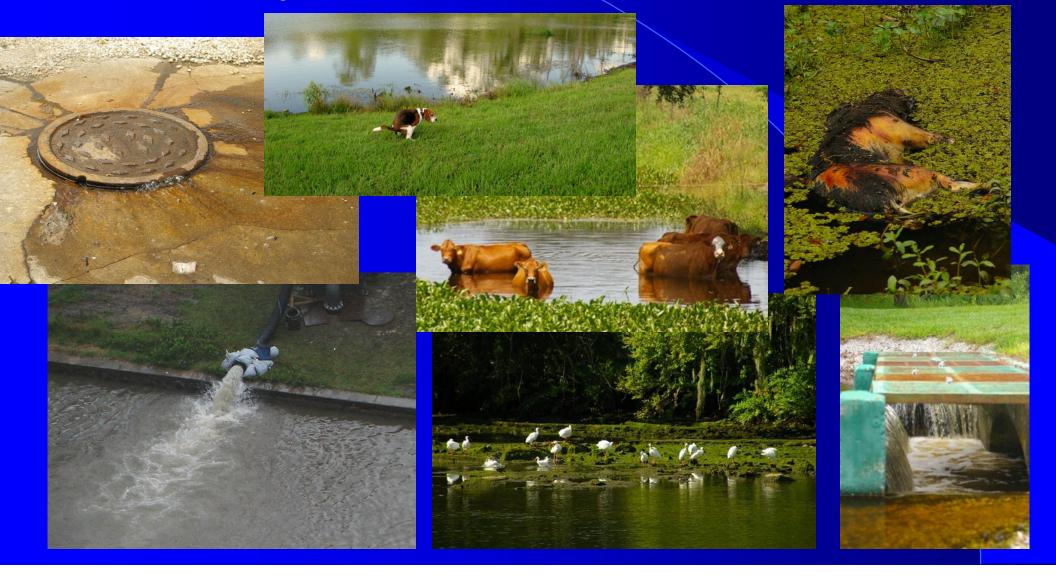
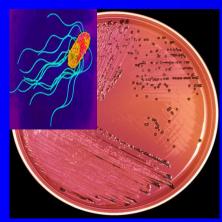
Fecal Contamination of Water & Determination of Pollution Sources



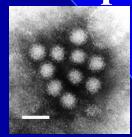
Valerie J. Harwood, Ph.D. Dept. Integrative Biology


January 28, 2010
The Impending Water Crisis of Tampa Bay

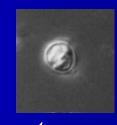
Water Can Be Contaminated by Many Different Fecal Sources

Water Quality Standards Must Protect Against Many Types of Pathogens

Bacterial pathogens



Salmonella


E. coli O157:H7

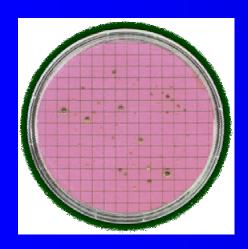
Viral pathogens

Norovirus

Protozoan pathogens

Giardia

How Do We Test Water Quality?


Boil Water Advisory February 5, 2008

> Office of Emergency Management is that any water used for drinking and/ or ed, prior to use.

Fecal Indicator Bacteria Surrogates for Pathogens

 Meant to act as a warning signal of fecal pollution and increased risk of associated pathogens in water

Total Coliform (drinking water)

Fecal Coliform (wastewater & recreational water)

Enterococci (recreational water)

Are Fecal Indicator Bacteria Always Good Surrogates?

- Sometimes absent when pathogens are present
- Consequence: No warning; more people may get sick
- Frequently present when pathogens are absent (false-positive)
- Consequence of false-positive: "crying wolf"; hurts tourism, public confidence in water quality
- Many possible sources!

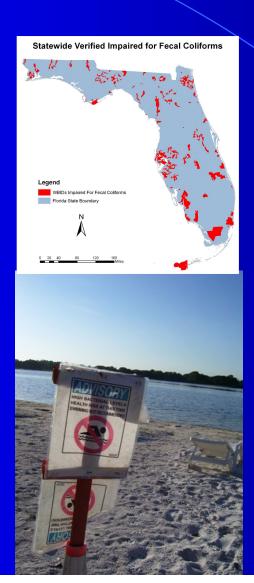
Fecal Coliforms Are Relatively Wimpy! Results from Reclaimed Water Across the U.S.

TABLE 2. Percentage of samples with detectable indicator organisms and pathogens

Indicator or pathogen	% of samples positive in each stage*			
	Influent	Biological treatment	Filter effluent	Disinfected effluent
dicators				
Total coliforms	100	100	94	63
Fecal coliforms	100	97	65	27
Enterococci	100	94	84	27
Clostridium perfringens	93	86	79	61
Coliphages on 15597	100	97	83	38
Coliphages on 700891	100	93	80	45
thogens				
Enteric viruses	100	73	58	31
Giardia	100	94	88	80
Cryptosporidium				
Total oocysts	74	84	71	70
Infectious oocysts	32	19	19	20

^a Data from all sampling events at the six facilities were pooled for each treatment step.

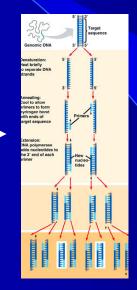
Microbial Source Tracking (MST)

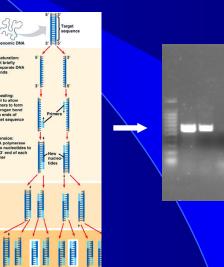


3

Why Do We Need to Know the Source?

- Sources vary from highest risk (human sewage)...
- ...to definite risk (cattle, poultry)
- ...to unknown risk (wildlife, pets, sediments, soils, stormwater)
- Can't remediate or implement w/o knowledge of dominant source(s)




Microbial Source Tracking Based on DNA "Markers"

- •Polymerase chain reaction targets a specific gene & copies it
- •Forensic-type evidence for contamination source

Summary

- Many pathogens have the potential to contaminate surface water
- These pathogens can come from many sources
- Detection of contamination is "one size fits all"
- We may not be using the best indicator(s)
- Clean-up and prevention of water contamination require knowledge of source

