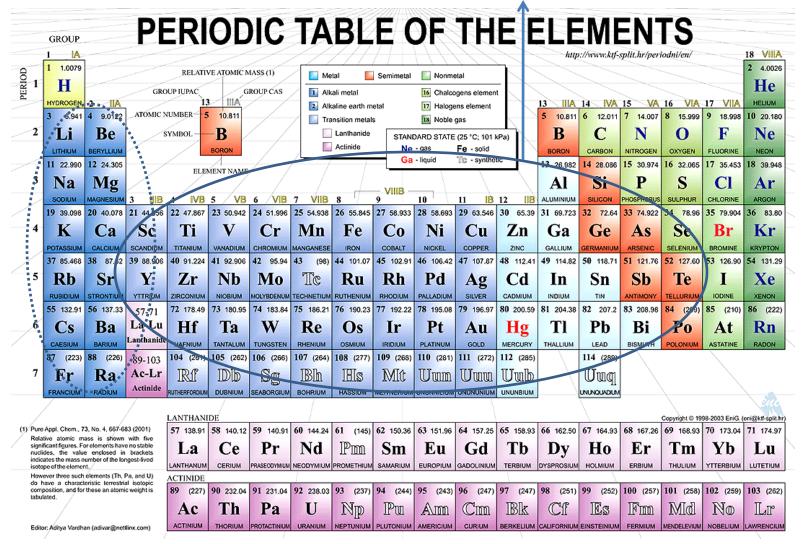
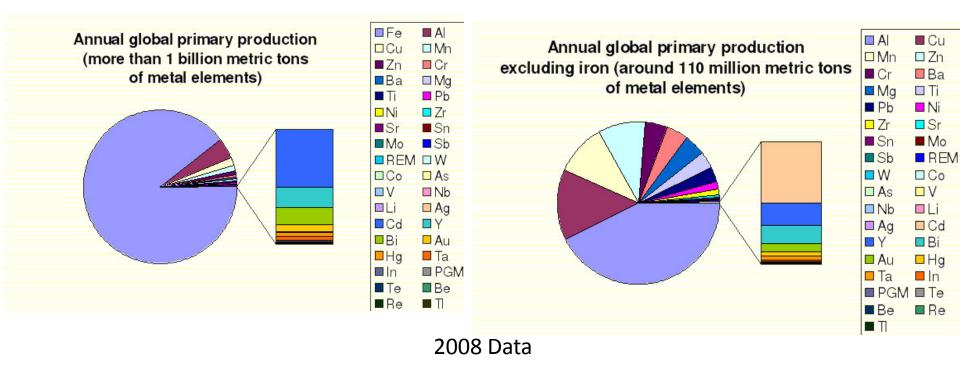
Heavy Metals in Domestic Drinking & Effluent Waters

Maya Trotz, Ph.D. Assistant Professor, Department of Civil and Environmental Engineering 1/28/10

The Impending Water Crisis of Tampa Bay: Waste, Reuse & Environmental Protection USF College of Public Health



Outline


- What are heavy metals?
- Why are we concerned with them?
- What regulations apply to them?
- What are current treatment options?
- Should we be concerned with heavy metals in effluent from the Howard F. Curren Advanced wastewater treatment plant?
- Some things to consider:
 - Are you concerned with heavy metals in your tap water?
 - Are heavy metals in grey water a potential issue?
 - What about heavy metal release during Aquifer Storage & Recovery?
- Conclusions

What are "heavy metals"?

No clear definition, but usually includes metals that have some toxic effect.

How much heavy metals do we produce?

Dr. A.M. Diederen, MSc., Metal minerals scarcity: A call for managed austerity and the elements of hope. Based on data from United States Geological Survey (USGS), *Mineral commodity summaries 2008*

Contaminant	Potential Health Effects from Ingestion	Sources of Contaminant
Antimony	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire
		retardants; ceramics; electronics; solder
<u>Arsenic</u>	Skin damage or problems with circulatory systems, and may have	Erosion of natural deposits; runoff from
	increased risk of getting cancer	orchards, runoff from glass &
	T 11	electronicsproduction wastes
<u>Barium</u>	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
D	Intertinal logic ma	
Beryllium	Intestinal lesions	Discharge from metal refineries and coal- burning factories; discharge from electrical,
		aerospace, and defense industries
Cadmium	Kidney damage	Corrosion of galvanized pipes; erosion of
		natural deposits; discharge from metal
		refineries; runoff from waste batteries and
		paints
Chromium (total)	Allergic dermatitis	Discharge from steel and pulp mills; erosion
		of natural deposits
<u>Copper</u>	Short term exposure: Gastrointestinal distress	Corrosion of household plumbing systems;
	Long term exposure: Liver or kidney damage	erosion of natural deposits
	People with Wilson's Disease should consult their personal doctor if the	
	amount of copper in their water exceeds the action level	
Lead	Infants and children: Delays in physical or mental development; children	Corrosion of household plumbing systems;
	could show slight deficits in attention span and learning abilities	erosion of natural deposits
	Adults: Kidney problems; high blood pressure	
Mercury (inorganic)	Kidney damage	Erosion of natural deposits; discharge from
		refineries and factories; runoff from
		landfills and croplands
<u>Selenium</u>	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	e i
		erosion of natural deposits; discharge from
Thellium	Hair loss; changes in blood; kidney, intestine, or liver problems	mines Leaching from ore-processing sites;
<u>Thallium</u>	rian 1055, changes in 01000, kiency, intestine, or inver problems	discharge from electronics, glass, and drug
		factories
2/2/2010	matrotz@eng.usf.edu	5

Types of reuse applications

Unrestricted Urban

- Irrigation
- Toilet Flushing
- Fire Protection
- Construction
- Landscape Impoundment
- Street Cleaning
- Restricted Urban
 - Golf courses
- Agricultural (Food Crops)
- Agricultural (Non-food Crops)
- Unrestricted Recreational
- Restricted Recreational
- Environmental (Wetlands)
- Industrial
- Groundwater Recharge (Nonpotable Aquifer)
- Indirect Potable Reuse http://epa.gov/nrmrl/pubs/625r04108/625r04108chap2.pdf

We <u>reclaim</u> water from wastewater treatment plants for various <u>reuse</u> applications. regulati

DC

criteria

ualitv

water

various

EPA Recommended Limits for Heavy Metals in Reclaimed Water for Irrigation

Constituent	Long-Term Use (mg/l)	Short-Term Use (mg/l)				
Aluminum	5.0	20				
Arsenic	0.10	2.0	U			
Cadmium	0.01	0.05	р			
Chromium	0.1	1.0	t			
Cobalt	0.05	5.0	0			
Copper	0.2	5.0				
Iron	5.0	20.0	2			
Lead	5.0	10.0	0			
Manganese	0.2	10.0				
Molybdenum	0.01	0.05	У			
Nickel	0.2	2.0	е			
Selenium	0.02	0.02	а			
Vanadium	0.1	1.0	r			
Zinc	2.0	10.0	S			

http://epa.gov/nrmrl/pubs/625r04108/625r04108chap2.pdf

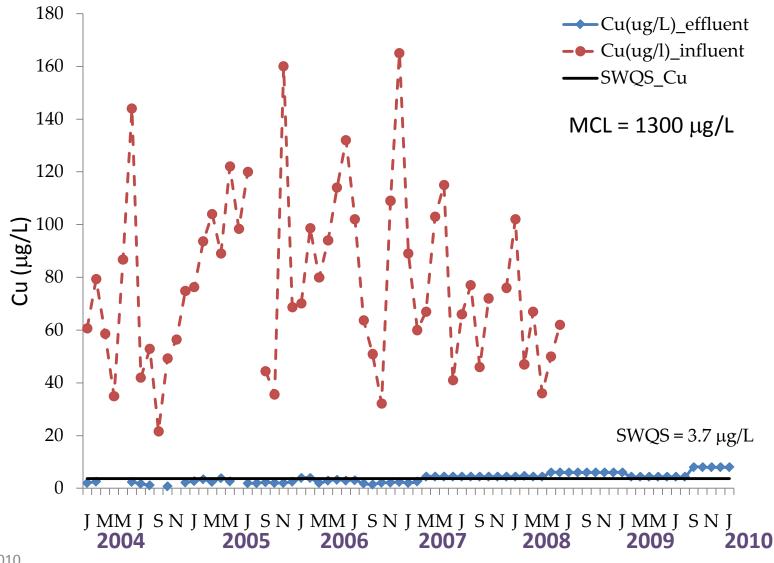
Treatment Technologies

nent		n, ion	ing	A	dsorptic	on	lon Exe	change	Mem Filtra	
Selected Component to be removed	Drinking Water Standard	Coagulation, Sedimentation	Lime Softening	GAC	PAC	Activated Alumina	Anion	Cation	Reverse Osmosis	Ultrafiltration
Arsenic (+3)	0.010	G-E	F-E	F-G	P-F	F-E	G-E	Р	E	Р
Arsenic (+5)	0.010	G-E	F-E	F-G	P-F	F-E	G-E	Р	E	F
Copper	1.3	G	G-E	F-G	Р	-	Р	F-G	E	-
Lead	0015	E	E	F-G	P-F	Р	Р	F-G	G-E	-
Mercury	0.022	F-G	F-G	F-G	Р	Р	Р	F-G	G-E	-

Performance rating at removing selected component: E – Excellent, G – Good, F – Fair, P – Poor.

Water reuse: Issues, technologies and applications. Takashi, A. et al., (2007). Metcalf & Eddy.

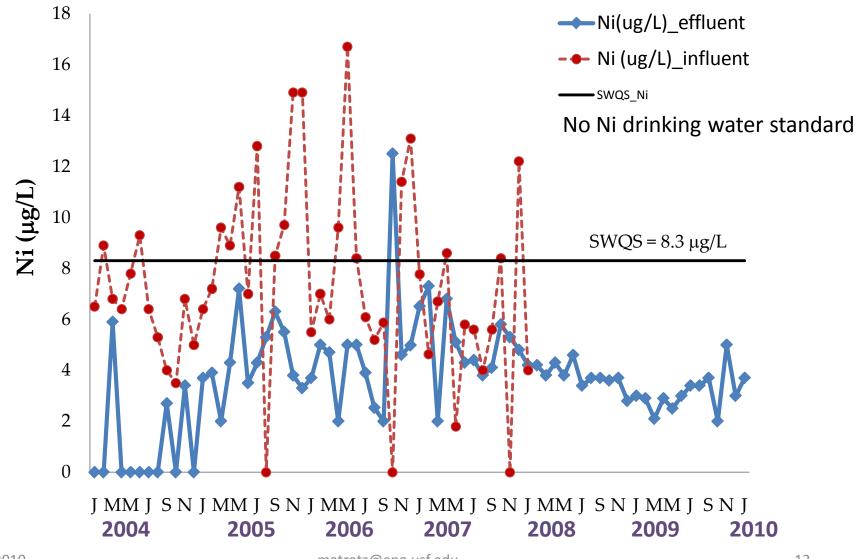
Removal of heavy metals after various treatment stages in wastewater treatment


	Raw Conc. µg/L	Prim Efflu	-	Secor Efflu	ndary Jent	Tert Efflı	iary ıent	Adva Wa Treat Efflu	ter ment	Overall %R
		Conc. μg/L	%R	Conc. µg/L	%R	Conc. μg/L	%R	Conc. µg/L	%R	
Arsenic	3.2	3.1	3	2.5	19	1.5	30	3	40	92
Cadmium	0.6	0.5	17	12	0	0.1	67	0.1	0	83
Chromium	3	4	0	2	32	1	24	1	25	83
Copper	63	79	0	43	33	9	52	11	0	83
Iron	600	534	11	180	59	50	22	40	2	94
Lead	5	6	0	6	0	1	93	1	0	91
Mercury	0.3	2	33	0.1	33	1	0	0.1	0	67

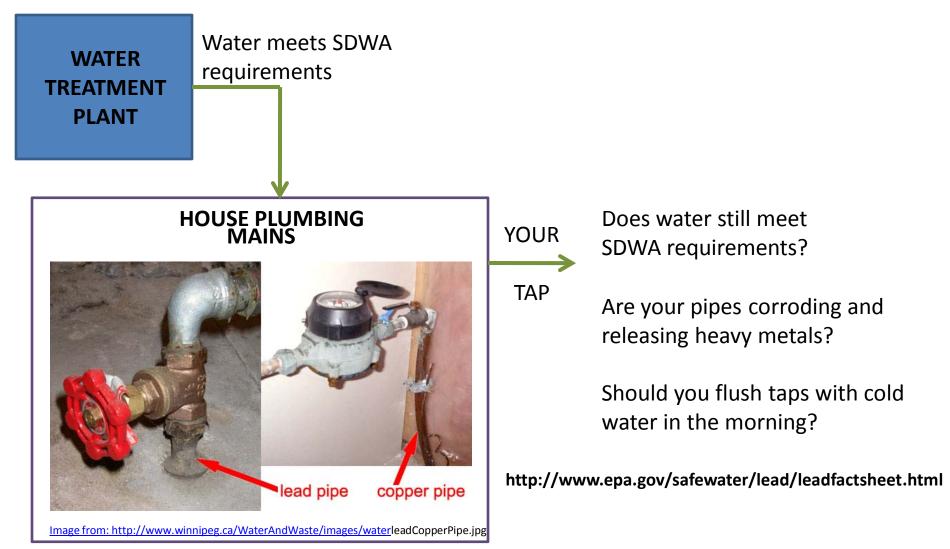
Water reuse: Issues, technologies and applications. Takashi, A. et al., (2007). Metcalf & Eddy.

Are metals a concern in effluent from Howard F. Curren Advanced Wastewater Treatment plant in Tampa, Fl?

					-		-
	Ni ug/l	Hg ug/l	Ag ug/l	Cu ug/l	Ni ug/l	Pb ug/l	Zn mg/l
Effluent 1/13/10	3.7	< 0.04	<4.0	<8	5.0	<12.0	0.014
SWQS Permit Level	8.3		2.3	3.7		8.5	0.086
Freshwater chronic	52.0	0.77			52.00	2.5	0.120
SDWA MCL		2		1300		15	
	TI	AI	As	Ва	Be	Ca	Со
	ug/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Effluent 1/13/10	<52	<0.060	<0.012	0.011	<0.001	96.6	<0.004
SWQS permit Level	6.3	1.5	0.05		0.0001		
Freshwater chronic		0.087	0.15				
SDWA MCL	2		0.01	2.000	0.004		
	Cd	Cr	Fe	K	Mg	Mn	Мо
	mg/l						
Effluent 1/13/10	<0.001	<0.008	0.049	16.3	27.40	0.010	0.004
SWQS permit Level	0.009	0.08					
Freshwater chronic	0.0003	0.011	1.000				
SDWA MCL	0.005	0.1					
	Na	Sb	Se	Sr	V		
	mg/l	mg/l	mg/l	mg/l	mg/l		
Effluent 1/13/10	193.0	<0.024	<0.016	0.450	<0.004		
SWQS permit Level		4.3	0.071				
Freshwater chronic			0.005				
SDWA MCL			0.05				

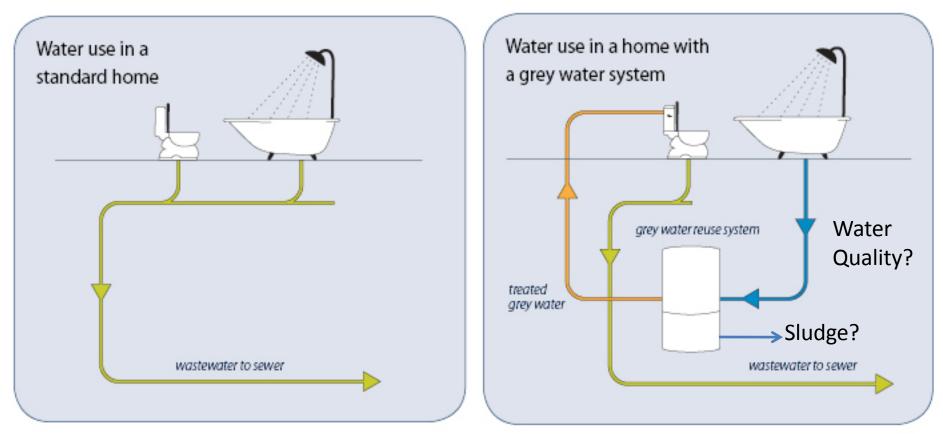

Howard F. Curren Wastewater Treat Plant: Cu data

2/2/2010


matrotz@eng.usf.edu

Howard F. Curren Wastewater Treat Plant: Ni data

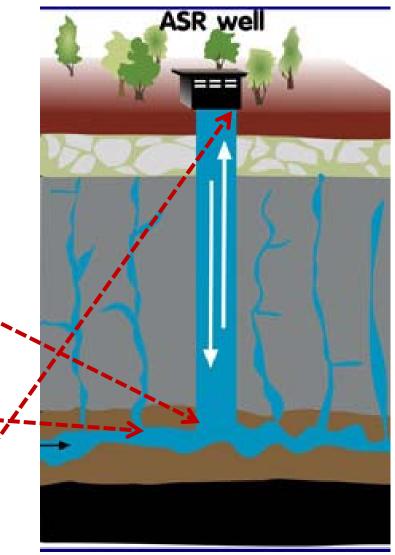
matrotz@eng.usf.edu


What about water out of your tap?

Changes in water quality as a function of time & location in the distribution system

Heavy metals in grey water

Potential sources in the house: plumbing materials, cutlery, jewelry, coins, home maintenance products, arts and craft products, dental fillings.



Changes in water quality as a function of household & treatment option

http://guelph.ca/uploads/ET_Group/waterworks/Grey%20water/home%20water%20use.jpg 2/2/2010 matrotz@eng.usf.edu

Aquifer Storage & Recovery (ASR)

- Storage of water in an aquifer to be used later
- Proposed injection of wastewater effluent
 - Water quality of injected water different from groundwater
 - Changes in groundwater concentrations possible
 - Dissolution/precipitation reactions
 - Possible increase in heavy metal concentrations
 - Additional treatment needed to remove heavy metals once pumped

Conclusions

- Heavy metals refers more to metals (transition, alkali earth, semi metals) in the periodic table that cause some toxic effect and are regulated.
- Heavy metals are used in many products & they never degrade.
- Worldwide bans on mercury and lead use can reduce our exposure to these metals.
- Various guidelines exist for aqueous heavy metal concentrations depending on the intended use of the water.
- Concentrations of heavy metals in wastewater effluent depend on treatment employed and at the Howard F. Curren wastewater treatment plant they are usually on the order of or below drinking water standard concentrations.
- Grey water systems can potentially expose us to higher concentrations of heavy metals than traditional sewer systems.
- We may be exposed to high concentrations of heavy metals through changes in water quality in the distribution system, especially due to corrosion.
- Aquifer Storage and Recovery processes can alter groundwater concentrations of heavy metals. This will require additional treatment when we wish to use it, but for most cases the technology exists.

Thank You.

Maya Trotz Civil & Environmental Engineering, University of South Florida <u>matrotz@eng.usf.edu</u> www.eng.usf.edu/~matrotz

Current Research Group: Ken Thomas, Joniqua Howard, Erlande Omisca, Arlin Briley, Kofi Dalrymple

