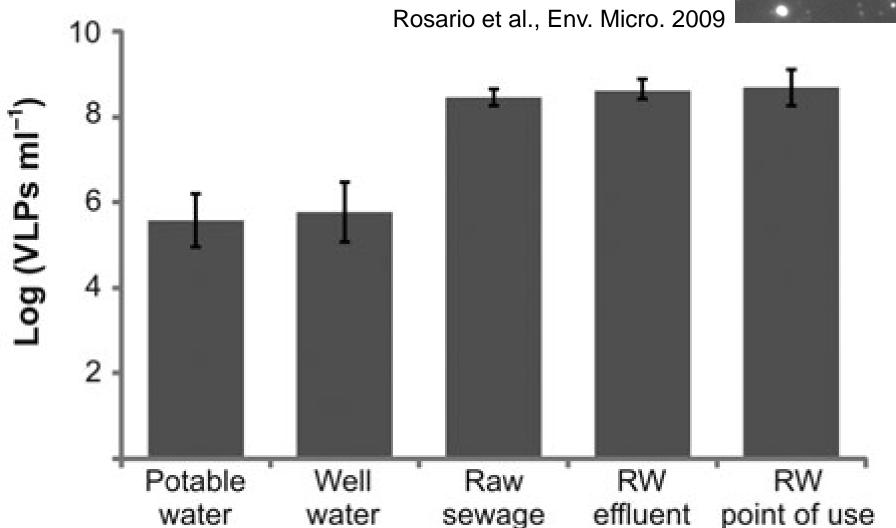
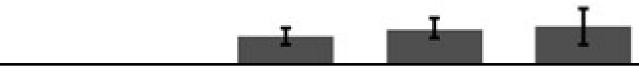

Viruses in Sewage and Reclaimed Water


Mya Breitbart University of South Florida College of Marine Science

Reclaimed Water Under the Microscope

There are ~ 1000 Times More Viruses in Reclaimed Water Compared to Well Water



There are ~ 1000 Times More Viruses in Reclaimed Water Compared to Well Water

10

Rosario et al., Env. Micro. 2009

Remember...

- Not all viruses are bad (these counts are dominated by bacteriophage)
- These viruses are not necessarily infective
- There is no such thing as a sterile water supply

Why Do We Need to Know What Viruses are in Reclaimed Water?

- To enable us to make <u>educated decisions</u> regarding water reuse
- To protect <u>human health</u> and the <u>health of the</u> <u>environment</u> (prevent problems)
- To develop viral indicators that can be used to assess treatment efficiency
- To identify <u>signatures of wastewater</u> <u>contamination</u>

The Virological Content of Reclaimed Water is Largely Unknown

- The transport/spread of human pathogens is one of the main concerns regarding reclaimed water use
- Classic bacterial indicators of water quality often do not correlate with viral pathogens
- What other types of viruses are in this alternative water supply?

Use microscopy, specific assays, and metagenomic sequencing to analyze the complete viral community

Step 1: Look for known viruses

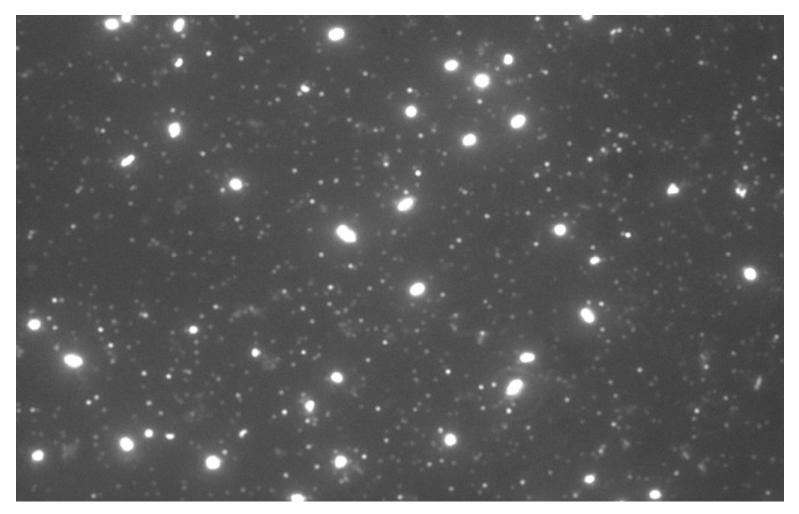
There is no "universal" assay for all viruses

	Percent Detected				
Viral Group	Raw Sewage	Final Effluent			
Adenoviruses	100% (12/12)	25% (3/12)			
Enteroviruses	75% (9/12)	8% (1/12)			
Hepatitis B	0%	0%			
Morbilliviruses	0%	0%			
Noroviruses	58% (7/12)	8% (1/12)			
Papillomaviruses	0%	0%			
Picobirnaviruses	100% (12/12)	33% (4/12)			
Reoviruses	0%	0%			
Rotaviruses	0%	0%			

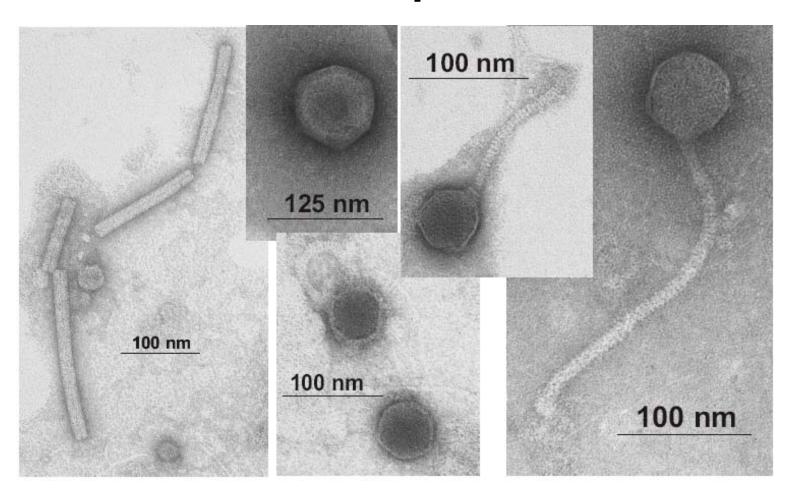
This narrows the range of viruses to monitor for

Symonds et al., Appl. Env. Micro. 2009

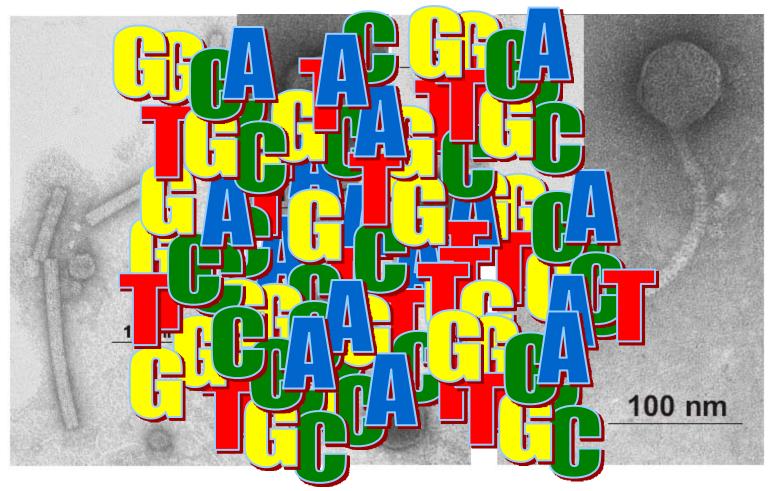
Step 1: Look for known viruses


PCR testing for human pathogens known to be transmitted via the fecaloral route

Step 2: Look for unknown viruses


How can you find something if you don't know what you're looking for?

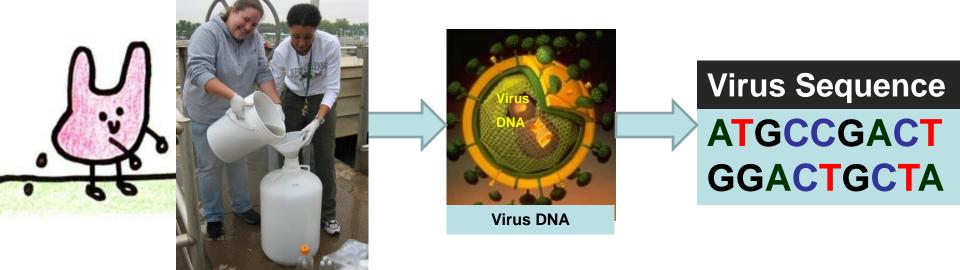
Metagenomics: The sequence-based analysis of the collective genomes contained in a sample


Description of the Complete Viral Community

Metagenomics: The sequence-based analysis of the collective genomes contained in a sample

Description of the Complete Viral Community

Metagenomics: The sequence-based analysis of the collective genomes contained in a sample



Description of the Complete Viral Community

Viral Metagenomics: A Novel Method to Discover Novel Viruses

To examine the complete viral community

- 1. Purify viruses from all other DNA/RNA based on physical properties
- 2. Extract DNA/RNA from viruses
- 3. Chop up DNA/RNA and sequence

Metagenomic Sequencing of Reclaimed Water Viruses

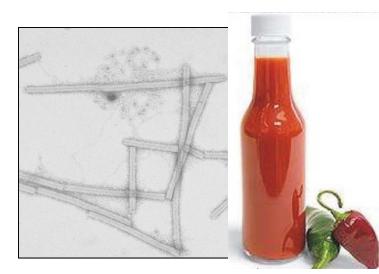
Lots of novel sequences (>55% unknown)!

- Most identifiable DNA virus sequences are:
- 98% Bacteriophage (viruses that infect bacteria)
 - Animal (Non-human) Viruses
 - Plant Viruses
- Most identifiable RNA virus sequences are eukaryotic viruses:
 - 22% Insect Viruses
 - 14% Plant Viruses
 - 4% Human Viruses

Viruses Found in Reclaimed Water

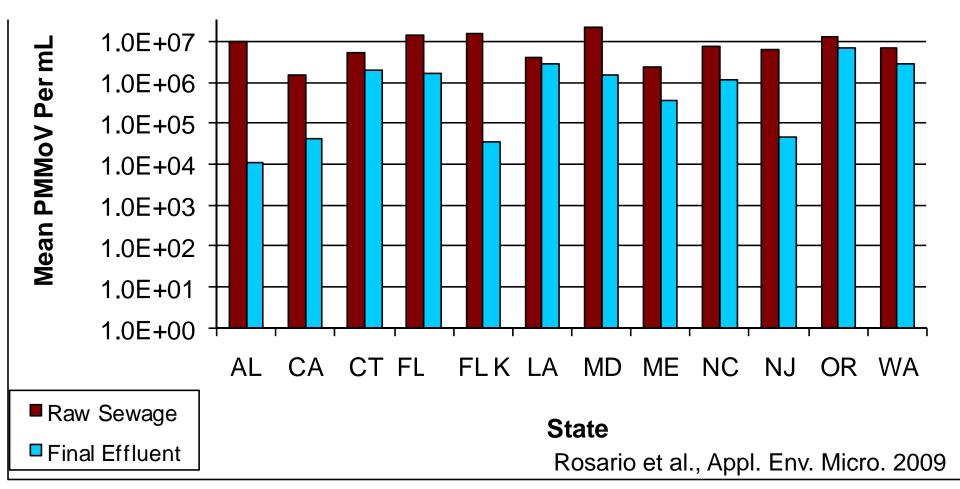
Virus Host	Types of viral homologs	ldentity Range (aa)
Humans	Rhinoviruses and enteric viruses (<i>Picornaviridae</i>)	25% - 54%
Animals	Avian and swine circoviruses (<i>Circoviridae</i>), shrimp viruses (<i>Dicistroviridae</i>)	25% - 56%
Plants	Vegetable, grain, and fruit viruses (<i>Geminiviridae</i> , <i>Nanoviridae</i> , <i>Sequiviridae</i> , Tobamovirus genus)	21% - 100%
Insects	Bee, cricket, and aphid viruses (<i>Dicistroviridae</i>)	22% - 74%

Rosario et al., Env. Micro. 2009

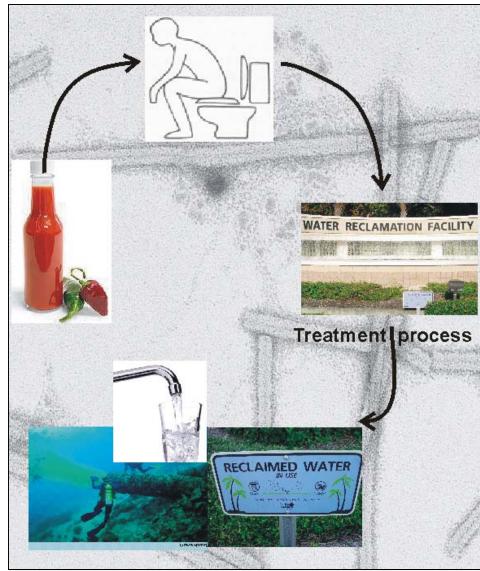

Pepper Mild Mottle Virus (PMMoV)

- RNA virus that infect peppers, causes fruit malformation and mottling
- Dominates the RNA viral community in human feces

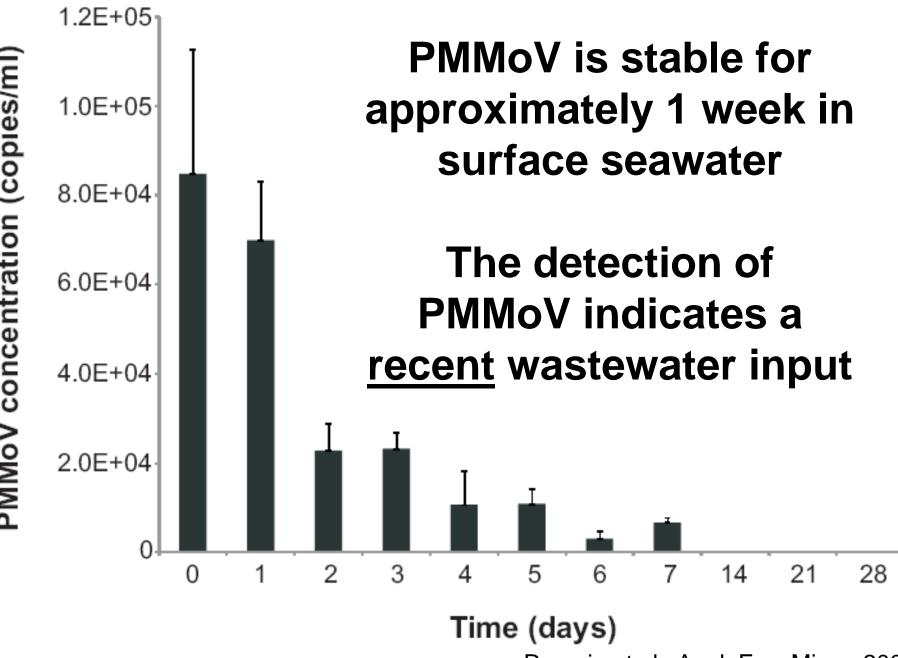
10⁶-10⁹ PMMoV per gram dry weight feces


- Dietary in origin (found in processed pepper foods)
- Still infectious to plants after passage through the human gut

Zhang et al., PLoS Biol 2006



PMMoV is Present at High Concentrations in Raw Sewage and Treated Wastewater From Throughout the United States


PMMoV as an Indicator of Fecal Pollution

- PMMoV is consistently found at high concentrations in human sewage and treated wastewater
- PMMoV is not dependent on active human infection
- The dietary origin of PMMoV makes it useful for source tracking (absent in dogs, cows, horses & pigs, but present in chickens/gulls)

PMMoV Co-occurs with Pathogens & Indicators in Marine Environments Exposed to Wastewater

Rosario et al., Appl. Env. Micro. 2009	10 10 01 01 01 01 01 01 01 01 01)6 -)5 -)4 -)3 -)2 -		Boca Raton	Broward	Hollywood	Miami North	Miami Central
Ente	roccoci/10		-	-	-	+	+	+
Norovirus/100ml			-	2	6	240	350	10
Adenovirus			-	-	-	+	+	-
Cryptosporidium/100L		4	-	10	90	16	210	
Giardia/100L			5	-	20	115	120	160

PMMoV concentration (copies/ml)

Rosario et al., Appl. Env. Micro. 2009

Conclusions

- Viruses are abundant in reclaimed water
 - Lots of novel viruses
 - Most sequences are similar to bacteriophage (different types than are present in potable water)
 Plant viruses and insect viruses are abundant
- The plant virus PMMoV may be a good indicator of fecal pollution and wastewater treatment efficiency
- It is critical to understand the viral load (identity and infectivity) in reclaimed water – both for public health, and the heath of the environment

Breitbart Lab – University of South Florida http://www.marine.usf.edu/genomics

Metagenomics

Karyna Rosario Christina Nilsson Yan Wei Lim Zhang Tao Yijun Ruan Forest Rohwer

PMMoV

Erin Symonds Karyna Rosario Chris Sinigalliano Jill Stewart

Sampling

Owrang Kashef Jan Tracy David Shulmister Chris Collins

Funding

Alfred P. Sloan Foundation Environmental Protection Agency Genome Institute of Singapore

References:

Rosario, K, EM Symonds, C Sinigalliano, J Stewart, M Breitbart (2009). *Pepper mild mottle virus* as an indicator of fecal pollution. Applied and Environmental Microbiology. 75: 7261-7267.

Rosario, K, C Nilsson, YW Lim, Y Ruan, M Breitbart (2009). Metagenomic analysis of viruses in reclaimed water. Environmental Microbiology. 11: 2806-2820.

Symonds, EM, DW Griffin, M Breitbart (2009). Eukaryotic viruses in wastewater samples from the United States. Applied and Environmental Microbiology. 75: 1402-1409.

Zhang, T, M Breitbart, WH Lee, J-Q Run, CL Wei, SWL Soh, ML Hibberd, E Liu, F Rohwer, Y Ruan (2006) RNA viral community in human feces: Prevalence of plant pathogenic viruses. PLoS Biology. 4: e3.