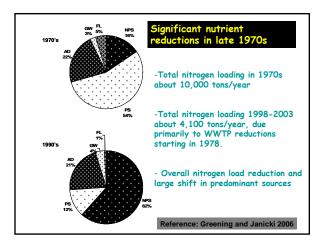
Potential Effects of Reclaimed Water options on Nitrogen Loading to Tampa Bay

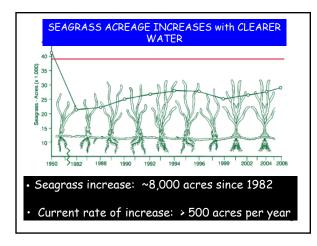
Holly Greening, Tampa Bay Estuary Program

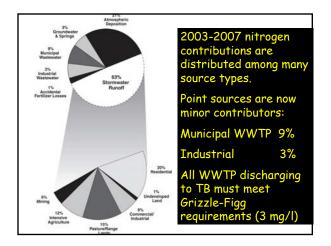
February 15, 2010


Tampa Bay in the 1970s

- Phytoplankton and macroalgae dominated
- 50% loss of seagrass between 1950 and 1980
- Newspapers declared Tampa Bay "dead"
- State-sponsored modeling results indicated little recovery possible even with all nitrogen sources removed due to residual nutrients in the sediments

Citizen-demanded action


- Citizens in Tampa demanded legislative action despite modeling results
- In 1978, State legislation (Grizzle Figg Act) for Tampa Bay required all wastewater treatment plants discharging in the Tampa Bay watershed to reach AWT standards (3 mg/l TN max) or 100% reuse within 3 years.
- Resulted in a 90% reduction of TN loading from WWTPs.



Listoria Chlonophull a	Year	Hills. Bay	Old Tampa Bay	Mid. Tampa Bay	Lower Tampa Bay
Historic Chlorophyll a	1974	Red	Red	Red	Green
	1975	Red	Red	Red	Green
Compliance	1976	Red	Red	Red	Green
compliance	1977	Red	Red	Red	Red
AWT Standards take effect	1978	Red	Red	Red	Red
	1980	Red	Red	Red	Red
	1981	Red	Red	Red	Red
	1982	Red	Red	Red	Red
	1983	Red			Red
	1984	Green	Green	Red	Green
Stormwater regulations enacted Consortium actions initiated	1985	Red	Red	Red	Green
	1986	Red	Red	Green	Green
	1988	Green	Green	Green	Green
	1989	Green	Red	Green	Green
	1990	Green	Red	Green	Green
	1991	Green	Green	Green	Green
	1992	Green	Green	Green	Green
	1993	Green	Green	Green	Green
	1994	Red	Red	Red	Red
 TMDL chl a Targets: 	1995	Red	Red	Red	Green
	1996	Green	Green	Green	Green
– Hillsborough Bay: 15.0 ug/L	1998	Red	Red	Red	Red
	1999	Green	Green	Green	Green
- Old Tampa Bay: 9.3 ug/L	2000	Green	Green	Green	Green
Middle Temps David O E	2001	Green	Green	Green	Green
 Middle Tampa Bay: 8.5 ug/L 	2002	Green	Green	Green	Green
- Lower Tampa Bay: 5.1 ug/L	2003	Green	Red	Green	Green
- Lower Tampa Bay. 5.1 ug/L	2004	Green	Green	Green	Red
	2005	Green	Green	Green	Green
	2007	Green	Green	Green	Green

HF Curren TN load contribution
to Tampa BayExisting HF Curren
total nitrogen load is
212 tons of TN/year
(2003-2007 average)Total TN load target
to Hillsborough Bay is
1451 tons TN/yearHF Curren is currently
contributing about
15% of the total TN
load target for
Hillsborough Bay

Potential Reuse Options: Irrigation

- Residential/commercial landscape irrigation
 - Estimated 90% reduction of TN load to the Bay when compared to direct discharge (USGS studies in St. Petersburg)
 - If all were reused as irrigation, estimated reduction of ~190 tons TN per year

11

Benefits and constraints: reclaimed as irrigation

- Potential significant nitrogen reduction to Tampa Bay
- Significant potable water offset
- Distribution is costly, no guarantee that residential customers will hook in
- Customers don't want or need irrigation in wet weather. Requires discharge during these times, or significant storage
- Little enhancement of potable water supply
 May result in increase TN load to streams or
- May result in increase TN load to streams or lakes in the watershed where used.

Benefits and constraints: Created wetlands

- Rainfall-independent- all discharge could be received even in wet weather
- Significant nitrogen removal from Tampa Bay. Nitrogen removal could be enhanced by incorporating denitrification into design
- Single pipe
- Requires land for wetland creation
- May not significantly enhance potable water supply, although some enhancement is possible

Potential Reuse Options: Creation of low-salinity habitat

- Introduction of freshwater reuse in upper reaches of tidal streams to create additional low-salinity habitat
- Low-salinity habitat critical for many baydependent fish species
- Used in Texas as fisheries production enhancement

Benefits and Constraints: Creation of low-salinity habitat

- Creation of priority habitat for Tampa Bay
- Nutrient removal by vegetative uptake
- Potential for additional nutrients delivered to tidal tributaries- may require additional treatment to remove nitrogen
- Unknown- PPCP on juvenile fishes ?
- No potable water benefit

16

Potential Reuse Options: Drinking water reservoir

- Nutrient removal directly from Tampa Bay, but increased nutrient input into Reservoir and downstream to Hillsborough River
- May require additional ambient treatment in the Reservoir to control algae concentrations
- Upper Hills. River is impaired for nutrients
- Significant potable water potential

Summary

- Reuse options can provide nutrient reductions to Tampa Bay
- Some could also provide additional potable supply or potable offsets
- All options have constraints

18