Estimation of Metabolic Rate

Adapted from ISO Components Method

Components	Initial Data	Values	Rate of Energy Expenditure [W]
Base	---	---	80
Posture	Sit Stand	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	
Activity	Body Involvement N H 1A 2A WB Effort L M H VH	See Activity Matrix	
Horizontal Rate of Travel - Average in Feet / Min	Estimate [ft/min]: $2.5 \mathrm{mph}=220 \mathrm{ft} / \mathrm{min}$	$1.0 \times$ Rate [ft/min]	
Vertical Rate of Travel - Average in Feet / Min	Estimate [ft/min]: 1 step $/ 2 \mathrm{sec}=$ $15 \mathrm{ft} / \mathrm{min}$ (ie, 6-inch step)	$17 \times$ Rate [ft/min]	
Total Metabolic Rate (Sum the Last Column)			

	Effort			
Activity	Light	Moderate	Heavy	Very Heavy
None	0	0	0	0
Hand(s) Only	25	55	70	80
One Arm	65	100	135	170
Both Arms	115	155	190	230
Whole Body	225	340	505	700
	Can be performed indefinitely with ease	Can be performed indefinitely with some effort	Can be performed for $30-60$ min before a break	Can be performed for about 15 min before a break

Estimation of Metabolic Rate

Adapted from Qualitative Method of Bernard and Joseph

Component \mathbf{s}	Initial Data	Values	Rate of Energy Expenditure [W]
Base	---	---	100
Arms	AI 0: Sedentary 0: Little Hand/Arm Movement 1: Hands Move Mostly < 20 in 2: Frequently Hands Move > 20 in 3: Bend, stoop, extended reaches	$\begin{gathered} 0 \\ 69 \\ 98 \\ 127 \\ 156 \end{gathered}$	
Lift (not appropriate for heavy manual materials handling)	Weight of Parts and Tools [lb] Wt: < 44 to $11>11$ WI: 142 Frequency [cycles / min] Frq: <2 2 to $5>5$ FI: 1023	$\begin{gathered} \mathrm{Al} \mathrm{x} \\ \mathrm{WI} \mathrm{x} \\ \mathrm{FI} \mathrm{x} \\ 5.1 \end{gathered}$	
Walk Average in Feet / Min (Do not include push / pull)	Estimated Rate [ft/min]: $2.5 \mathrm{mph}=220 \mathrm{ft} / \mathrm{min}$	$1.0 \times$ Rate [ft/min]	
Push / Pull	Average Force $[\mathrm{lb}]=$ \qquad \{F\} Average Distance per Minute [ft/min] = \qquad \{D\}	$\begin{gathered} (6+1.3 \times F) \\ \times D / 3 \end{gathered}$	
Vertical Rate of Travel Average in Feet / Min	Estimated Rate [ft/min]: $1 \mathrm{step} / 2 \mathrm{sec}=15 \mathrm{ft} / \mathrm{min}$ (ie, 6-inch step)	$17 \times$ Rate [ft/min]	
Total Metabolic Rate (Sum the Last Column)			

Estimation of Metabolic Rate for General Activities

Walking/Carrying (S from 50 to $85 \mathrm{~m} / \mathrm{min}$ or about 2 to 3 mph)
$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{kg} . \mathrm{min}]=3.5+0.1^{*} \mathrm{~S}+1.8$ * G * S
S = Speed [m/min]
$\mathrm{G}=$ Grade [fraction of the elevation / distance]
Adjustments to V_{02} for walking at about $90 \mathrm{~m} / \mathrm{min}$ or 3.3 mph

Terrain	Correction Factor
Paved Road/Grass Track	1.0
Plowed Field	1.5
Hard Snow	1.6
Sand Dune	1.8

Running ($\mathrm{S}>130 \mathrm{~m} / \mathrm{min}$ or about 5 mph)
$\mathrm{V}_{\mathrm{O} 2}$ [mL/kg.min] $=3.5+0.2$ * $\mathrm{S}+0.9$ * G * S
S = Speed [$\mathrm{m} / \mathrm{min}$]
G = Grade [fraction of the elevation / distance]
Stairs -- Ascent
$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{kg} \cdot \mathrm{min}]=1.2+1.74{ }^{*} \mathrm{~S}_{\mathrm{v}}$
$\mathrm{S}_{\mathrm{v}}=$ Vertical Speed [m/min]
Stairs -- Descent
$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{kg} . \mathrm{min}]=1.2+0.6{ }^{*} \mathrm{~S}_{\mathrm{v}}$
$S_{v}=$ Vertical Speed Downward [m/min]

Stool Stepping

$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{kg} . \mathrm{min}]=5.4+2.8{ }^{*} \mathrm{~S}_{\mathrm{v}}$
$\mathrm{S}_{\mathrm{v}}=$ Vertical Speed [m/min]
Ladder Ascent
$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{kg} . \mathrm{min}]=8.0+2.0 * \mathrm{~S}_{\mathrm{v}}$
$\mathrm{S}_{\mathrm{v}}=$ Vertical Speed [m/min]

Ladder Decent

$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{kg} . \mathrm{min}]=5.7+0.49{ }^{*} \mathrm{~S}_{\mathrm{V}}$
$\mathrm{S}_{\mathrm{v}}=$ Vertical Speed Downward [m/min]

Shoveling

$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{min}]=500+7.0 * \mathrm{~W}_{\mathrm{e}}$ $\mathrm{W}_{\mathrm{e}}=$ External Work [kg.m/min]

Cycle or Cranking (External Work by Arms or Legs)

$\mathrm{V}_{\mathrm{O} 2}[\mathrm{~mL} / \mathrm{min}]=300+2.0{ }^{*} \mathrm{~W}_{\mathrm{e}}$
$\mathrm{W}_{\mathrm{e}}=$ External Work [kg.m/min]

```
Estimation of Metabolic Rate for Materials Handling Tasks
Adapted from Garg
M = Metabolic Rate [kcal/min]
BW = Body Weight [kg]
L = Average Load [kg]
F = Average Rate [move/min]
H = Height of Lift [m]
D = Distance of Horizontal Move [m]
R = Slide (Push/Pull) Force [kg]
S = Walking Speed [m/min]
G = Grade [%]
Idle (Sit/Stand) and Hold
M[kcal/min] = 0.024*BW + 0.06*L
Walking / Carrying
M[kcal/min] = 0.024*BW + 0.74 + 0.0248*BWW*(S/60) 2 + 0.0434*L*(S/60) +
    0.08*L + 0.00379*(BW+L)*G*(S/60)
```


Lifting (Stoop)

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024^{*} \mathrm{BW}+\left(0.0013^{*} \mathrm{BW}+0.0144^{*} \mathrm{~L}^{*} \mathrm{H}\right)^{*} \mathrm{~F}\)
```


Lifting (Arm)

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024^{*} \mathrm{BW}+\left(0.00025^{*} \mathrm{BW}+0.0208^{*} \mathrm{~L}^{*} \mathrm{H}\right)^{*} \mathrm{~F}\)
```


Lifting (Squat)

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024^{*} \mathrm{BW}+\left(0.00205^{*} \mathrm{BW}+0.025^{*} \mathrm{~L}^{*} \mathrm{H}\right)^{*} \mathrm{~F}\)
```


Lowering (Stoop)

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024^{*} \mathrm{BW}+\left(0.00107 * \mathrm{BW}+0.00675^{*} \mathrm{~L}^{*} \mathrm{H}+0.0104\right)^{*} \mathrm{~F}\)
```


Lowering (Arm)

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024 * \mathrm{BW}+(0.000372 * \mathrm{BW}+0.012 * \mathrm{~L} * \mathrm{H}) * \mathrm{~F}\)
```


Lowering (Squat)

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024 * \mathrm{BW}+(0.00204 * \mathrm{BW}+0.00701 * \mathrm{~L} * \mathrm{H}) * \mathrm{~F}\)
```


Horizontal Movement of Load

```
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024 * B W+0.02 * L^{*}\) D*F
Slide (Push/Pull) Load
\(\mathrm{M}[\mathrm{kcal} / \mathrm{min}]=0.024 * \mathrm{BW}+(0.09 * \mathrm{D}+0.025 * \mathrm{R} * \mathrm{D}) * \mathrm{~F}\)
```

