How science can contribute to poverty alleviation in Africa – examples and lessons learned

Christian Borgemeister, CEO icipe

A centre of excellence in Africa—for research and capacity building in insect science and its applications
An intergovernmental organization — charter signed by 13 countries worldwide
~400 staff total, 50 PhD scientists, visiting scientists and PDFs, always ~50–70 MSc & PhD students in residence
An organization with a unique history — genesis in Africa, 40+ yrs old

Africa-focused - Current activities in 24 African countries
Collaborative work in Middle East, South America, Asia
International HQ in Nairobi
Several field stations across Kenya & in Port Sudan, country office in Ethiopia (planned for Rwanda and DRC)
general facts

- Current activities in 24 African countries
- Collaborative work in Middle East, South America, Asia
- International HQ in Nairobi
- Several field stations across Kenya, including TRO campus in Mbita Point (Lake Victoria) & in Port Sudan, country office in Ethiopia (planned for Rwanda and DRC)
- Numerous partnerships in Africa – NARS, NGOs, CBOs, and especially African Universities (>34 – capacity building one of the key achievements of icipe)
- Strong partnerships with European research institutions (Rothamstead, MPI Jena, Inst Pasteur, LSHTM, LSTM, WUR, Oxford, SLU, Univ Glasgow, Imperial Col, KTH, etc.) and North American R&D partners (McGill, UC Riverside, Yale, UC Davis, Univ Birmingham, Luf, NIH, USDA etc.)
Core-funding mainly from Governments of Sweden, Switzerland, UK, Germany, France & Kenya.
Core increased by approx. 80% in last 7 years, paralleled by substantial increases in restricted income.
Core to restricted ratio approx. 35:65.
2011 budget $19.8 m (Forecast 2012 $25 m; 2005 $9 million); strategic reserve $ 4.5 m (2005 - $250k); lean management structure (0.8 of every $1 goes into R&D + capacity building).
Project funding from various development (EU, BMZ, MoFA Finland & NL etc.) and science oriented donors (Welcome, NSF, NIH, BMGF, Google.org etc.).

Project funding from various development (EU, BMZ, MoFA Finland & NL etc.) and science oriented donors (Welcome, NSF, NIH, BMGF, Google.org etc.).

general facts

- **4H paradigm**
 - R&D on human, animal, plant & environmental health
 - Common denominator: insects/arthropods

true African menace

- Transmission of trypanosomes causing nagana in livestock (annual losses > $ 6.5 billion)
- Human African Trypanosomiasis (hat) (> 500,000 cases/yr)
For savannah species (vectors of nagana) icipe’s NGU trap based on combination of visual & olfactory cues can reduce flies by >90% in ~ 2 years. Yet one stops & they come back. Solution: community-based trapping technologies not well suited for pastoralists. Need for a moving technology.

Basis: repellency.

- Waterbuck are present in tsetse habitats but not fed upon.
- Refractoriness is mediated by repellents.
- Waterbuck repellent blend (WRB) reduces fly catches by 70% and feeding efficiency >95%.
- Allomones from these animals may be useful in protecting cattle from tsetse attack.
- 5-component WRB identified (patent application).

Cows in waterbuck clothing.
- New dispenser model (KIRDI/icipe ii) derived from icipe prototype developed
- Basically 2 dispensers are combined into 1 with 1 common reservoir
- 2 tygon tubes are joined to form 1 tube from which constant release rate is achieved
- Tubing is protected with a metallic casing to minimize damage (patent application)

Integration of repellents with other tsetse control tactics – evaluation of "push-pull"

10 sites on the outskirts of Shimba Hills National Reserve have been selected - area > 100 km²

<table>
<thead>
<tr>
<th>Location (block)</th>
<th>Treatments</th>
<th>No. of pastoralists</th>
<th>No. of cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengo</td>
<td>Push-Pull (WR)</td>
<td>22</td>
<td>68</td>
</tr>
<tr>
<td>Kizibe</td>
<td>Push (WR)</td>
<td>21</td>
<td>128</td>
</tr>
<tr>
<td>Mktongani</td>
<td>Push (SR)</td>
<td>19</td>
<td>96</td>
</tr>
<tr>
<td>Mangawani</td>
<td>Push (WR)</td>
<td>26</td>
<td>141</td>
</tr>
<tr>
<td>Mswavi</td>
<td>Pvl</td>
<td>20</td>
<td>140</td>
</tr>
<tr>
<td>Mkuni</td>
<td>Control</td>
<td>21</td>
<td>115</td>
</tr>
<tr>
<td>Katiglii</td>
<td>Pvl</td>
<td>32</td>
<td>176</td>
</tr>
<tr>
<td>Maakia</td>
<td>Control</td>
<td>21</td>
<td>153</td>
</tr>
<tr>
<td>Kidongo</td>
<td>Push-Pull (SR)</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>221</td>
<td>1,225</td>
</tr>
</tbody>
</table>
tsetse - nagana

- Animals more settled when grazing
- Animals grazing much closer to park fence than before without being disturbed by flies
- Animals grazing early morning & late evenings
- Herdsmen stopped lighting fires to smoke away flies
- Drug (trypanocides) use declined
- More pastoralists demanding to be included in trials
- >95% pastoralists report that repellents are very effective

tsetse - hat

> 500,000 hat cases/yr in Africa

Drugs very old, rather inefficient & can have significant side effects
Vector control among the most promising intervention techniques
90% of blood meals of G. f. fuscipes from monitor lizards
Working hypothesis: G. f. attracted by host odours
Trials on Chamaunga island in Lake Victoria
- Comparing 6 lizards vs. 1 ox & 1 human + empty control
- Odours from metallic cube (containing sources) blown over black-cloth covered electric grid

Lizard odour increase catch for female (x1.9; \(P < 0.05\)) and to lesser extend male flies (x1.5; ns)

Human and cattle odours no significant effect (catch indices of x1.1 – x1.3)

<table>
<thead>
<tr>
<th></th>
<th>Empty</th>
<th>Ox</th>
<th>Lizard</th>
<th>Human</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (M)</td>
<td>13.2</td>
<td>15.2</td>
<td>19.3</td>
<td>15.1</td>
<td>ns</td>
</tr>
<tr>
<td>Females (F)</td>
<td>6.8</td>
<td>9.0</td>
<td>13.3</td>
<td>8.3</td>
<td>*</td>
</tr>
<tr>
<td>M+F</td>
<td>21.3</td>
<td>24.6</td>
<td>32.6</td>
<td>23.3</td>
<td>*</td>
</tr>
</tbody>
</table>

* significant at \(P < 0.05\)

Human and cattle odours no significant effect (catch indices of x1.1 – x1.3)

Work-in-progress:
- Odour collection, GC-MS analysis, followed by bio-assays
Malaria kills more people in Africa (>1,000,000/yr) especially children (5,000/day) than any other disease.

Tremendous impact on all aspects of live, including agriculture productivity.

icipe develops integrated malaria programs that include vector control using environmentally techniques.

In 3 pilot ecologies, a coastal town, East African highlands, and a high-input agricultural environment, icipe & partners test development of participatory integrated control strategies for malaria.

Informing & training of communities is paramount.

Approach tailor made for the different ecologies.

Aim is to show as proof of concept that integrated malaria control can substantially reduce disease burden.

Identification & subsequent control of breeding habitats of mosquitoes crucial for success of integrated control.

In East African highlands often pits of brick makers are key breeding sites for malaria-transmitting mosquitoes.

Sadly families or the brick makers are often among the first victims of malaria.

Environmental management (e.g. drainage & introduction of larvivorous fish) & application of botanicals like Neem considerably reduced malaria incidence.
In urban Malindi very often abandoned pools during the off-season turned out to be the main breeding sites for mosquitoes.

Environmental management + larval control initiated by icipe & its partners led to drastic reduction in malaria incidences in the communities.

- Increasingly important interactions between human health & agriculture
- In Mwea irrigation scheme of Central Kenya integration of soybean crop in usual rice-rice rotation drastically reduced vector populations, improved soil, provided farmers with additional income from soya, & increased yield of subsequent rice crop
- Improved timing of fertilizer considerably affected vector dynamics
- Better knowledge on spatial & temporal dynamics of vectors allow for optimal timed larvicide (Bti) applications

Key factors for success:
(i) identification of breeding habits (most men-made)
(ii) larval control (Bti, botanicals)
(iii) adult control (ITNs, IRS, repellent)
(iv) environmental management
(v) public awareness
(vi) intra- & inter-sectorial collaboration
(vii) capacity building

Substantial reduction in morbidity (25-50%) in the different ecologies with 12-24 months
Anopheles mosquitoes most important insect worldwide Yet very little known on basic biology & ecology

Conventional wisdom: Anopheles mosquitoes is neither limited by sugar nor affected by it; thus sugar-feeding is trivial & not important for life history.

If true, then plant-feeding no role in disease epidemiology.

Yet many open questions, for instance what about males?

Our work show with field & lab evidence that plants play vital role in An. gambiae biology, their vectorial capacity, & possibly malaria transmission.

GC-MS profiles of the most and least attractive person.
Potential usages:
- New surveillance tools
- Combination with control using auto-dissemination approach
- Mass trapping?

mosquitoes – SolarMal

Objective
Demonstrate proof of principle for elimination of malaria from Rusinga Island using LLINs + case management, combined with mass trapping of mosquito vectors

- Panels to power (i) light, (ii) cellphone charger, & (iii) odour-baited mosquito traps
- Envisaged to cover approx. 7,000 households on island
- Partnership with WUR, Swiss Tropical Institute & funded by COMON foundation
Horn of Africa “hotbed” of arboviral (emerging infectious) diseases

Hardly any capacity in the region

Knowledge on vector taxonomy, biology & ecology at best dismal, often non-existing

Chikungunya and West Nile Virus examples illustrating potential of such emerging infectious diseases (EIDs)

New surveillance & diagnostic tools urgently needed

The Martin Lüscher Emerging Infectious Diseases Laboratory
The Martin Lüscher Emerging Infectious Diseases Laboratory

BSL-2, 2+ and BSL-3 labs + BSL-2 insectaries

Screening for arboviruses

Multiplex MassTag PCR: screen with family-specific primers

High Resolution Melting (HRM) Analysis: identifies specific viruses based on unique melting profiles

Next generation sequencing: full viral genome sequencing

Identification of cryptic species and population differences of mosquito vectors.

Tool: HRM

Recent findings: a great diversity of mosquitoes have the potential to transmit Rift Valley Fever (RVF) Virus
mosquitoes – beyond malaria

RVF vector lure developed from a blend of chemicals derived from host animals increases mosquito captures by ~70% compared to conventional trapping system. Trapping system captures only mosquitoes, therefore target specific. R&D took >3 years.

ONE cornerstone of icipe’s capacity building activities is ARPPIS (African Regional Postgraduate Program in Insect Science). Founded in 1983 ARPPIS oldest & most productive capacity building network in Africa.
icipe together with its 34 African University partners is training a cadre of young scientists in ARPPIS

PhD – so far >350

At ARPPIS 3 sub-regional Centers at Universities of Legon-Accra (Ghana), Addis Ababa (Ethiopia), and Harare (Zimbabwe) and at icipe’s HQ

MSc – so far >150

Offer opportunities to African and non-African students with self-funding (DRIP)

Help modernize African University curricula & facilities

Offer professional development opportunities for Visiting Scientists (among others in collaboration with AAS & TWAS)

Technology transfer through training of trainers, special short courses, community participation at farmers/community level

Genuine participation of all stakeholders (incl. communities, partners from public & private sectors etc.)

Symmetrical cooperation between national/ regional & international research partners

Necessitates often sig. investment in capacity building (both human & in research hardware, e.g. EID lab)

Interdisciplinary research approach, involving social scientists, paramount
There are NO silver bullets
For instance vector control needs
to be embedded as 1 component
in disease management systems
Ecological understanding of key
plant pests and/or disease
vectors still insufficient (why do
we know so much more about
truffles than of anophelines??)
Better understanding of ecology
(esl. chemical ecology) &
behaviour of pests & vectors can
lead to new + highly efficient
control strategies

......lessons learnt

Last but not least
GOOD SCIENCE IS KEY!

acknowledgements

Rajinder Saini, Maurice Omollo, Baldwyn Torto, Dan Masiga,
Rosemary Sang, Anne Fischer, Jandouwe Villinger, Klaus
Mithoefer, Richard Mukabana, Ahmed Hassanali & many others

Partners
KEMRI, Mike Lehane & team (LSTM), Bob Novak UoAB/USF),
Ulrike Fillinger & Steve Lindsay (LSHTM), Woody Foster (Ohio
State Univ), Willem Takken (WUR) & many others
www.icipe.org