Relation Between Weight Status, Gender, Ethnicity and the Food and Activity Choices of 6th and 9th Grade Students

Pediatric Grand Rounds
January 4, 2007

Heather L. Curtiss, M.A.
University of South Florida

Overview of the Presentation

- Identification of the Problem
- Purpose of the Research
- Method
- Results and Discussion
- Limitations & Implications
- Directions for Future Research
Identification of the Problem

- Over the past 30 years, the proportion of young Americans who are overweight has increased from approximately 5% in the early 1970s to 15% in 2000 (Sorof & Daniels, 2002).

National Health and Nutrition Examination Survey

NHANES

Identification of the Problem

- Overweight has increased fastest among minorities and southerners
- Race-ethnic differences are observed for both sexes
- SES differences are observed such that low-SES is a risk factor for overweight
Ethnic Differences by Gender

Boys:
- Mexican Americans (14.1%)
- Caucasians (11.3%)
- African Americans (10.7%)

Girls:
- African Americans (16.3%)
- Mexican Americans (13.5%)
- Caucasians (8.9%)

National Longitudinal Survey of Youth
(Strauss & Pollack, 2001)

Overall Prevalence of Overweight

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 – 11</td>
<td>7%</td>
<td>11%</td>
<td>15%</td>
</tr>
<tr>
<td>12 – 19</td>
<td>5%</td>
<td>11%</td>
<td>15%</td>
</tr>
<tr>
<td>>20</td>
<td>15%</td>
<td>23%</td>
<td>31%</td>
</tr>
</tbody>
</table>
Consequences of Overweight in Adolescents

– The more overweight in adolescence, the more likely to be overweight as adult

– Rising type II diabetes mellitus rate

– Other health consequences:
 - Obstructive sleep apnea, osteoarthritis, increased blood pressure, adverse lipoprotein profiles, ovarian cysts, liver disease

Adolescent Dietary Intake Trends

- Males and females may eat similar servings of fruits and vegetables

- Boys more likely to consume more of their total energy from fat

- Results of ethnic differences are mixed

- High SES and high parental education associated with adequate fruit and vegetable consumption
Physical Activity

- Nationwide, 33% of students (grades 9-12) went to PE classes daily while in school (25% in FL; 22% in Hillsborough County)
- Nationwide, 54.2% of students (grades 9-12) reported participating in physical education classes (39% in FL; 31.4% in Hillsborough County)
- 9th graders report highest levels of engagement in PE (70%) and 12th graders lowest (38%)
- Boys report higher levels of engagement in vigorous activity, exercise programs and sports across all ethnic groups

Physical Activity

- African American and Hispanic youth report lower levels of activity and significantly higher levels of inactivity (TV viewing and computer use)
- African Americans and Hispanics more likely to take P.E. classes
- As grade level increases, the general trend is a decrease in T.V. watching and computer use (≥ 3 hours/day)
- Older adolescents may spend more time in part-time jobs, with friends, text messaging

Purpose

What is the relationship between the independent variables BMI, gender and ethnicity and the dependent variables

– dietary intake (fruit/vegetables, dairy, meat/beans, grains, and junk foods) among adolescents?
– physical activity (vigorous activity and moderate activity) among adolescents?
– sedentary activity among adolescents?

Method

Participants:
– Data collected by Steps to a Healthier Hillsborough Staff
– Students in grades 6 and 9
– 3 middle schools; 2 high schools
– 535 participants
Method

Instruments
- Body Mass Index (BMI)
- Nutrition and Exercise Survey for Students

Method-Instruments

Body mass index (BMI)
- Weight in kg/height in m²
- Conducted by school nurses
- No shoes or heavy jackets
- Weight categories based on BMI percentiles
 - Expected weight = BMI < 85th percentile and ≥ 5th percentile
 - At-risk for overweight = BMI ≥ 85th percentile and BMI < 95th percentile
 - Overweight = BMI ≥ 95th percentile
Method-Instruments

Survey
- Nutrition and Exercise Survey for Students
 - Three sections: Demographics, Dietary Intake, Physical Activity
 - Total of 26 items (see attached copy of survey)

Method

Procedures
- Approval by county school district
- Students screened for BMI between October-February of 2005-2006 academic year
- Students completed surveys in health or physical education classes
Method

Data analyses
- SPSS 11.5
- Descriptive statistics
 - Report on assumptions
- Factorial MANOVA- 3 (Weight Category) X 2 (Gender) X 3 (Ethnicity)
- Interactions
- Main effects

Method

Data analyses-
- Follow-up MANOVA with series of ANOVAs
- Tukey tests on levels of ethnicity
- Effect Sizes
- Alpha was set at the .05 level of probability to control for Type I error.
Descriptive Statistics- Sample Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overweight BMI ≥ 95th percentile</th>
<th>At-Risk BMI ≥ 85th percentile < 95th percentile</th>
<th>Expected BMI < 85th percentile ≥ 5th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI Percentile, No. (%)</td>
<td>115 (21.5)</td>
<td>100 (18.7)</td>
<td>320 (59.8)</td>
</tr>
<tr>
<td>Ethnicity, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>58 (20.4)</td>
<td>50 (17.7)</td>
<td>175 (61.8)</td>
</tr>
<tr>
<td>White</td>
<td>44 (24.2)</td>
<td>36 (19.8)</td>
<td>102 (56)</td>
</tr>
<tr>
<td>Latino</td>
<td>13 (18.6)</td>
<td>14 (20)</td>
<td>43 (61.4)</td>
</tr>
<tr>
<td>Gender, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>59 (20.9)</td>
<td>55 (19.6)</td>
<td>167 (59.4)</td>
</tr>
<tr>
<td>Female</td>
<td>56 (22)</td>
<td>45 (17.7)</td>
<td>153 (60.2)</td>
</tr>
<tr>
<td>Grade, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>82 (23)</td>
<td>58 (16)</td>
<td>216 (61)</td>
</tr>
<tr>
<td>9th</td>
<td>32 (19)</td>
<td>40 (24)</td>
<td>95 (57)</td>
</tr>
</tbody>
</table>

Comparison of percent of males and females who were overweight by ethnic group

![Comparison of percent of males and females who were overweight by ethnic group](image)

Figure 1. Sample sizes for males: Black, n = 26; Latino, n = 26, and White, n = 7; Sample sizes for females: Black, n = 32; Latino, n = 18, and White, n = 6.
Interactions for 6th Graders

There was an interaction between gender and ethnicity, Wilks Lambda = .93, $F(10, 664) = 2.47, p = .007$.

Figure 2. Sample sizes for males: Black, n = 27; Latino, n = 20, and White, n = 8; Sample sizes for females: Black, n = 23; Latino, n = 16, and White, n = 6.
Probability Values for Between-Subjects Effects

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Fruit/Vegetables</th>
<th>Dairy</th>
<th>Meat/Beans</th>
<th>Breads</th>
<th>Junk Food</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender*Ethnicity</td>
<td>.404</td>
<td>.000*</td>
<td>.047</td>
<td>.099</td>
<td>.051</td>
</tr>
<tr>
<td>Weight Category</td>
<td>.814</td>
<td>.964</td>
<td>.006*</td>
<td>.120</td>
<td>.003*</td>
</tr>
<tr>
<td>Gender</td>
<td>.435</td>
<td>.027</td>
<td>.003*</td>
<td>.354</td>
<td>.131</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>.908</td>
<td>.287</td>
<td>.712</td>
<td>.354</td>
<td>.131</td>
</tr>
</tbody>
</table>

Note. n = 354. Significant at .01 level.

Interaction between Ethnicity and Gender

Figure 3. Males’ and females’ mean scores by ethnicity on dairy. Males (n = 188), (black, n = 91), (Latino, n = 75), (white, n = 22); females (n = 167), (black, n = 78), (Latino, n = 67), (white, n = 22).
Hypothesis 1a: Dietary Intake

- Overweight adolescents will consume more dairy products, meat/beans, and junk food and less fruit/vegetables and grain products as compared to their expected weight peers

 - Main effects were observed for weight category, Wilks Lambda = .93, $F(10, 664) = 2.59$, $p = .004$, Univariate follow-up F-tests significant

Main Effect for Weight Category on Meat/Beans and Junk Food Consumption

- Hypothesis that overweight category would report increased servings of meat/beans, dairy, and junk foods not supported
- Expected weight reported highest consumption on meat/beans and junk foods
Dietary Intake among Weight Groups for 6th Grade Males

USDA Recommendations: F & V (3-5); Milk (2-3); M & B (1); Breads (6); Junk food (sparingly)

Dietary Intake among Weight Groups for 6th Grade Females

USDA Recommendations: F & V (3-5); Milk (2-3); M & B (1); Breads (6); Junk food (sparingly)
Hypothesis 1b: Dietary Intake

- Males are more likely than females to consume the daily recommended servings of dairy products
 - Follow-up test of between subjects not significant at predetermined p-value due to familywise Bonferroni adjustment

Main Effect for Gender on Meat/Bean Consumption

- There was a statistically significant effect for gender, Wilks Lambda = .97, $F(5, 332) = 2.39, p = .038$.
- Meat/Bean Consumption, $p = .003$
 - Males: $M = 4.15, SD = 2.04$
 - Females: $M = 4.02, SD = 1.86$
 - The effect size was small, $d = .07$
Question 2: Physical Activity

- Overweight adolescents will engage in less physical activity (vigorous and moderate activity) than expected weight peers

 - No main effect for weight category
 - Means
 - Overweight females reported fewer bouts than expected weight peers
 - Overweight males reported more bouts than expected weight peers

Females’ mean scores on physical activity variables by weight category ($n = 111$). Overweight ($n = 29$) and expected weight ($n = 82$).
Males' mean scores on physical activity variables by weight category \((n = 66) \). Overweight \((n = 12) \) and expected weight \((n = 54) \).

Hypothesis 2a: Physical Activity

- Males are more likely than females to meet the weekly recommendations
 - Main effect for vigorous activity
 - Males: \(M = 4.15, SD = 2.22 \)
 - Females: \(M = 2.55, SD = 2.00 \)
 - Effect size, \(d = 0.77 \) (medium/large)
 - Similar means for moderate activity
 - Males: \(M = 2.80, SD = 2.35 \)
 - Females: \(M = 2.33, SD = 2.13 \)
 - Effect size, \(d = 0.22 \) (small)
Hypothesis 2b: Physical Activity

- African American and Latino/Hispanic females are less likely than Caucasian females to meet the weekly recommendations
 - No interactions
 - Caucasian females, on average, met vigorous activity guideline
 - All 3 groups were below moderate activity guideline

Hypothesis 2c: Physical Activity

- Latino/Hispanic males are less likely than African American and Caucasian males to meet the weekly recommendations
 - No interaction
 - Males across 3 groups met vigorous activity guideline
Hypothesis 3a: Sedentary Activity

- Overweight adolescents will engage in more sedentary activity as compared to their expected weight peers
 - No main effect
 - Overweight reported the same number of hours of sedentary activity per day

Females' mean scores on sedentary activity variable by weight category ($n = 111$). Overweight ($n = 29$) and expected weight ($n = 82$).
Males' mean scores on sedentary activity variable by weight category ($n = 66$). Overweight ($n = 12$) and expected weight ($n = 54$).

Question 3b: Sedentary Activity

- African American and Latino/Hispanic adolescents will engage in higher levels of sedentary activity than Caucasian adolescents.
 - Main effect not statistically significant
 - Pairwise Tukey tests were significant ($p = .002$)
 - Caucasians ($M = 3.65, SD = 1.60$) versus African Americans ($M = 4.69, SD = 1.39$), $d = 0.65$
 - Latinos ($M = 3.94, SD = 1.70$) versus African Americans, $d = 0.46$
Strengths of Study

- First to compare weight categories across all dietary intake variables
- Ethnically diverse sample
- BMIs were conducted by professionals
- Survey items included specific examples of a serving size for each variable

Limitations

- External validity
 - Population and ecological transferability
 - Small sample (n = 179)
Limitations

- Internal validity
 - Body Mass Index as a measure
 - Athletes with muscle mass can have elevated BMIs
 - Food frequency questionnaire
 - Lack of research on reliability and validity-tend to overestimate
 - Items included may not represent all cultural groups
 - Self-report by adolescents

Implications for School Psychology

- Awareness of prevalence of pediatric overweight and associated consequences and use of data
- Development of accommodation plans
- Use consultation skills to help create environments that promote positive health behaviors
 - Consult with nutritionists, school nurses at building and district level
 - Elimination of vending machines that sell soda and unhealthy snacks
 - Offer options for healthier lunches (healthy lunch cart, vegetarian choices)
 - Create exercise programs with incentives
 - School staff to role model healthful behaviors
Implications for School Psychology

- Conduct needs assessments to identify barriers to engagement in healthy behaviors
- Collaboration with medical professionals (especially school nurse)
- Develop interventions in collaboration with school health personnel

Directions for Future Research

- Conduct studies in other school districts within and outside of state and other regions of U.S.
- Larger sample size
- Studies in districts with passive consent policies or perhaps at a university
- Develop culturally sensitive instrument using student input
- Include a combined physical activity question
- Control for high BMIs due to sports participation
- Ethnicity versus Race
This research was supported by a grant from the USF Collaborative for Children, Families & Communities

Discussion/Questions